
SplitsTree App User Manual

Daniel H. Huson and David Bryant

SplitsTree App (version 6.4.11, built 19 Dec 2024)

2

Contents

1 Using SplitsTree 7
1.1 Getting started . 7
1.2 Layout of the main window . 8
1.3 Main toolbar items . 8
1.4 The main tabs . 9
1.5 Alignment tab . 10
1.6 Tree-View tab . 10
1.7 Tree-Pages tab . 11
1.8 Tanglegram tab . 12
1.9 DensiTree tab . 13
1.10 Split-Network tab . 13
1.11 Network tab . 14
1.12 World map tab . 15
1.13 Workflow graph tab . 15
1.14 How to cite tab . 16
1.15 Input editor tab . 16
1.16 Report tabs . 17
1.17 Text tabs . 18
1.18 The sidebar . 18
1.19 The draft genome dialog . 19

2 Building trees and networks 21
2.1 Using the workflow . 21
2.2 Building trees . 22
2.3 Neighbor Net and other split network methods . 22

2.3.1 Neighbor Net . 22
2.3.2 Manipulating split networks . 23
2.3.3 Split Decomposition . 23
2.3.4 Splits in characters . 24

2.4 Haplotype networks . 24
2.4.1 Minimum spanning network . 24
2.4.2 Median Joining network . 25

2.5 Rooted phylogenetic networks . 25
2.5.1 Implicit vs explicit trees and networks . 25
2.5.2 Hybridization networks . 25
2.5.3 How to compute a rooted network from rooted trees . 27
2.5.4 Cluster networks . 28

3 Consensus trees and networks 29
3.1 Consensus trees . 29

3

3.1.1 Average consensus method . 29
3.1.2 Strict-, majority- and greedy-consensus methods . 29
3.1.3 Densi-tree consensus . 30

3.2 Networks representing trees . 30
3.2.1 Consensus networks . 30
3.2.2 Consensus outline . 31
3.2.3 Confidence networks . 31

A The main menu bar 33
A.1 The File menu . 33
A.2 The Edit menu . 33
A.3 The Select menu . 34
A.4 The View menu . 34
A.5 The Data menu . 35
A.6 The Distances menu . 35
A.7 The Tree menu . 35
A.8 The Network menu . 36
A.9 The Analysis menu . 36
A.10 The Window menu . 37
A.11 The Help menu . 37

B Main data blocks 39
B.1 Taxa block . 39
B.2 Traits block . 39
B.3 Characters block . 40
B.4 Distances block . 40
B.5 Trees block . 41
B.6 Splits block . 41
B.7 Network block . 41
B.8 View block . 42
B.9 Algorithms block . 42
B.10 Report block . 42
B.11 Sets block . 43
B.12 SplitsTree6 block . 43
B.13 Genomes block . 43

C Algorithms 45
C.1 Algorithms on a Characters Block . 45
C.2 Algorithms on a Distances Block . 50
C.3 Algorithms on a Splits Block . 52
C.4 Algorithms on a Trees Block . 53
C.5 Algorithms on a Network Block . 60

D Supported import and export formats 61
D.1 Supported import formats . 61

D.1.1 Importers for a characters block . 61
D.1.2 Importers for a distances block . 61
D.1.3 Importers for a trees block . 61
D.1.4 Importers for a splits block . 61
D.1.5 Importers for a network block . 61
D.1.6 Importers for a genomes block . 61

D.2 Supported output formats . 62

4

D.2.1 Exporters for a taxa block . 62
D.2.2 Exporters for a characters block . 62
D.2.3 Exporters for a distances block . 62
D.2.4 Exporters for a trees block . 62
D.2.5 Exporters for a splits block . 62
D.2.6 Exporters for a network block . 62
D.2.7 Exporters for a genomes block . 62
D.2.8 Exporters for a view block . 62

D.3 Taxon display labels import . 63
D.4 Traits import . 63

E Workflow 65
E.1 Input and working nodes . 65
E.2 Data and algorithm nodes . 66
E.3 Exporting the workflow . 69
E.4 Running a workflow on multiple datasets . 69

F Styling labels 71

5

Introduction

The SplitsTree App is new software for exploring and analyzing phylogenetic data, with an emphasis on phyloge-
netic networks. Offering a comprehensive set of features, the software provides over 100 algorithms for computing
distances, phylogenetic trees, split networks, haplotype networks, rooted phylogenetic networks, tanglegrams,
consensus trees and consensus networks.

This new software [Huson and Bryant, 2024] is designed to accommodate the increasing scale and intricacy of
modern data sets. It extends, integrates and supersedes our earlier applications SplitsTree4 [Huson and Bryant,
2006] for unrooted phylogenetic trees and networks, Dendroscope3 [D. H. Huson, 2012] for rooted trees and
networks, and PopArt [Leigh and Bryant, 2015] for haplotype analysis.

If you use this program, the please cite:

Daniel H. Huson and David Bryant. The SplitsTree App: interactive analysis and visualization using phylogenetic
trees and networks. Nature Methods (2024) https://doi.org/10.1038/s41592-024-02406-3.

Figure 1: Example of SplitsTree analysis of primate mtDNA.

6

https://doi.org/10.1038/s41592-024-02406-3

Chapter 1

Using SplitsTree

In this chapter we give an overview of how the interface of the SplitsTree app is organised. Later we provide more
details on the actual methods and procedures.

1.1 Getting started

To get started using this program, download the latest installer from https://software-ab.cs.uni-tuebingen.

de/download/splitstree6 for Linux, Mac OS X or Windows, and install the program on your computer. Ver-
sions for iOS and Android are being tested.

Launch the program by double-clicking the program icon or launch it from the command line (Linux).

Use the File->Open... menu item to open a file containing data in one of the supported formats (see Chapter D).

If the data you provide is set of characters (or multiple sequence alignment), then by default, the SplitsTree app
will compute P-distances (see Section C.1) and then will run Neighbor Net (see Section C.2) to obtain a split
network (see Section 1.10). If you provide a distance matrix, then this will also result in a split network being
displayed. If you supply trees, then the first tree will be displayed (see Section 1.6).

Here is a toy example of characters data. You can copy this text from the manual and then paste it onto the
import data button (see Section 1.3) to obtain the network show in the figure (see Fig. 1.1).

6 64

Taxon1 TAAGTAGATCGGAGTTTTTACTCGTGTGATTTTGGGTATTTTTTATTTAGATTATGAAATTATA

Taxon2 CTTAATATATAATGATATTACTTAAACATTATTAAATGATACACTAACTATAATTATTGAACAT

Taxon3 AAAATTATATAATATAACATTATATTCATTACCACAAGATTATATTATAAAATATATTGTACAC

Taxon4 TTCAATATATAATGAAACTTTATAAATAACTTTAGAAATCTTATAAAAAAATATCGACGAACAA

Taxon5 TAAGTAGATCTGAGTTTTTACTCGTGTGATTTTGGGTATTTTTTATTTAGATTATGAAATTATA

Taxon6 TAAATTGGATAATATTTTATTATGTGTTACTACAGAAATCATTAATTATATAAACGATATACAA

7

https://software-ab.cs.uni-tuebingen.de/download/splitstree6
https://software-ab.cs.uni-tuebingen.de/download/splitstree6

Figure 1.1: Neighbor net computed for toy characters data.

1.2 Layout of the main window

In the SplitsTree app, you can open one or more documents and each one has its own main window. Different
analyses of the same data in the same document are shown in different tabs in that window (see Fig. 1.2). Tabs
can be laid out side-by-side.

Each document opened in SplitsTree has its own main window. The main window has the following parts:

• A menu bar providing menu items to access features of the program. Note that all features or the program
can also be accessed from within the main window as well (see Fig. 1.2) (figure part g).

• A toolbar containing both document- and tab-specific items (figure parts e,f).

• A main tab pane that contains all the text and data tabs (figure part a).

• A sidebar providing access to the workflow (figure parts b,c).

• An algorithms tab pane (inside the sidebar) for parameterizing and running algorithms (figure parts b,d).

1.3 Main toolbar items

There are three document-specific toolbar items on the left side of the main toolbar and several tab-specific
toolbar items ones on the right (see Fig. 1.2) (see Fig. 1.3).

Document specific toolbar items:

• The files menu button - provides a menu that contains file-related items from the main files menu and a
list of recently opened documents.

• The import data button - use this open any string or file from the system clipboard, or via drag-and-drop,
into a new SplitsTree document.

• The sidebar toggle button - use this to show or hide the sidebar.

Tab specific toolbar items (that apply only to the currently selected main tab):

• An undo button and redo button.

8

Figure 1.2: The main window. (a) Text and graphic output are presented in the main tabs on the right-hand side
of the window. (b) There is a side-bar on the left hand side that shows (c) the workflow at the top and (d) tabs
for setting algorithm parameters at the bottom. At the top left (e) there are some document-specific tool-bar
items whereas the items at the top right (f) apply to the current main tab. While all program features can be
directly accessed from the main window, the menu bar (g) provides alternative access to many of the features.

Figure 1.3: The main toolbar has three document-specific items on the left: Files menu button, import data
button and sidebar toggle button. It has several tab-specific ones on the right: Undo and redo, font resizing,
select all/none, find/replace and export.

• An increase font size button and increase font size button.

• A selection button to select all or none.

• A find button that you press to open the find dialog, press again to open the replace dialog (if available)
and once again to close the dialog.

• An export button that gives access to items for copying, exporting or printing the data or image associated
with the current tab. An additional item is provided for showing or hiding the QR code associated with a
given tree or network.

1.4 The main tabs

The main window uses a tabbed pane to present all text and visualizations (see Fig. 1.2). Here is an overview of
the supported tabs:

• Alignment tab - provides a visualization of the input multiple sequence alignment.

• Tree-View tab - shows a phylogenetic tree or rooted network.

• Tree-Pages tab - shows pages of phylogenetic trees or rooted networks.

• Tanglegram tab - shows a tanglegram of trees or rooted networks [Scornavacca et al., 2011].

9

• Densi-Tree tab - shows a densi-tree visualization of a profile of trees [Bouckaert, 2010].

• Split-Network tab - show a split network [Dress and Huson, 2004] or phylogenetic outline [Bagci et al.,
2021].

• Network tab - shows a network such as a haplotype network [Bandelt et al., 1999].

• World map tab - shows a map of the world and displays traits data that have associated and latitude and
longitude coordinates.

• Workflow tab - provides access to the workflow graph.

• How to cite tab - provides a description of the data and algorithms used, and provides the necessary citations.

• Input editor tab - provides an interactive editor for entering and parsing input data.

• Report tabs - these are used to present the results of analyses such as phylogenetic diversity.

• Text tabs - any of the data blocks can be displayed in such a text tab, they provide several different formats.

1.5 Alignment tab

The Alignment tab provides a visualization of the input characters or multiple sequence alignment (see Fig. 1.4).

Figure 1.4: The alignment tab for displaying and working with a multiple sequence alignment.

The alignment tab has a drop-down menu button at the left that contains items for selecting sites. There is a
button for selecting a color scheme. There is a button for toggling between a close-up view and a total view of
the alignment, and buttons for zooming in and out both vertically and horizontally.

1.6 Tree-View tab

The Tree-View tab shows a phylogenetic tree or a rooted network (see Fig. 1.5).

The tree view tab has a toolbar and side panel that are hidden by default, but can be opened using two toggle
buttons at the top right of the tab.

The toolbar provides items for selecting how to draw the tree (or rooted network), the choices are between
rectangular, circular and radial cladogram or phylogram. There is a button that toggles the scale bar and addition

10

Figure 1.5: The tree-view tab for drawing a phylogenetic tree or rooted network.

information (such as name of the tree, if any, and number of nodes, edges and leaves). In addition, there are
buttons for rotating, flipping and zooming.

The side panel (on the right) contains items for styling the taxon labels and for adding marks to the taxa. These
are colored shapes that appear next to the taxon label. There are items for displaying taxon traits, if present.
Moreover, there are items for setting the line width of edges and to choose whether to label edges by associated
weights or confidence values.

1.7 Tree-Pages tab

The Tree-Pages tab shows pages of phylogenetic trees (see Fig. 1.6).

Figure 1.6: The tree-pages tab for displaying a collection of phylogenetic trees or rooted networks.

The tree-pages tab has a toolbar and side panel that are hidden by default, but can be opened using two toggle
buttons at the top right of the tab.

11

The toolbar provides items for selecting how to draw the tree (or rooted network), the choices are between
rectangular, circular and radial cladogram or phylogram. There is a button that toggles addition information
(such as name of the tree, if any, and number of nodes, edges and leaves). In addition, there are buttons for
rotating, flipping and zooming. At the right side of the toolbar, there is a text input field for setting the dimensions
of a page in the format rows x cols.

The side panel contains items for styling the taxon labels and for adding marks to the taxa.

At the bottom of the tree-pages tab there is a row of buttons that can be used to navigate through the pages.

1.8 Tanglegram tab

The Tanglegram tab shows a tanglegram of trees or rooted networks [Scornavacca et al., 2011] (see Fig. 1.7).

Figure 1.7: The tanglegram tab for comparing two phylogenetic trees or rooted networks.

The tanglegram tab has a toolbar and side panel that are hidden by default, but can be opened using two toggle
buttons at the top right of the tab.

The toolbar provides items to determine the first and second trees (from the same file) and for selecting how to
draw either tree (or rooted network), the choices are between rectangular phylogram, rectangular cladogram and
triangular cladogram (trees only). There is a button that toggles addition information (such as name of the tree,
if any, and number of nodes, edges and leaves). In addition, there are buttons for rotating, flipping and zooming.

The side panel contains items for styling the taxon labels and for adding marks to the taxa.

12

1.9 DensiTree tab

The Densi-Tree tab shows a densi-tree visualization of a Bayesian profile of trees [Bouckaert, 2010] (see Fig. 1.8).

Figure 1.8: The densi-tree tab for displaying a Bayesian profile of phylogenetic trees.

The densi-tree tab has a toolbar and side panel that are hidden by default, but can be opened using two toggle
buttons at the top right of the tab.

The toolbar provides items for determining how to draw the trees, choices are between rectangular, triangular,
rounded and radial phylogram. (The rounded phylograms are time-consuming to draw and can cause problems.)
In addition, there are buttons for rotating, flipping and zooming.

The side panel contains items for styling the taxon labels and for adding marks to the taxa. The line width can be
set here. In addition, two colors can be set. The first is used for edges that in the tree profile that are compatible
with the displayed greedy consensus tree (default color is black), and the second is used for incompatible edges
(default color is red).

1.10 Split-Network tab

The Split-Network tab shows a split network [Dress and Huson, 2004] or phylogenetic outline [Bagci et al., 2021]
(see Fig. 1.9).

To reshape the layout of the network by rotating the edges associated with one or more selected splits, press-and-
drag on the network.

The split-network tab has a toolbar and side panel that are hidden by default, but can be opened using two toggle
buttons at the top right of the tab.

The toolbar provides a choice box to determine how to draw the splits. The choices are as a split network, to-scale
or as a topology (with all edges of uniform length), or as a phylogenetic outline, again, either to-scale or as a
topology (with all edges of uniform length). There is a second choice box to determine whether the network is to
be drawn unrooted or rooted, using either mid-point rooting or outgroup rooting . The latter requires that some
taxa have been selected; these are treated as the outgroup.

In addition, there are buttons for rotating, flipping, zooming and for setting the scale ratio to a specific value to
ensure that different networks are drawn to the same scale. Use the rotate buttons to rotate the entire network.

13

Figure 1.9: The split-network tab for displaying a collection of splits as a split network or phylogenetic outline.

The right side panel contains items for styling the taxon labels and for adding marks to the taxa. The line width
can be set here. In addition, the line width and color can be set. The color of the inner area of an outline can
be set. You can request to have the splits labeled by their weight, their confidence values (if available) or their
internal split ids.

1.11 Network tab

The Network tab shows a network (see Fig. 1.10). The network tab has a toolbar and side panel that are hidden
by default, but can be opened using two toggle buttons at the top right of the tab.

Figure 1.10: The network tab for displaying a haplotype networks and related on constructs.

The toolbar provides a choice box to determine how to draw the network. In addition, there are buttons for
rotating, flipping and zooming.

The side panel contains items for styling the taxon labels and for adding marks to the taxa. The line width can
be set here. In addition, there are items to determine which traits are to be shown in pie charts and whether
to a legend. To change the colors used in pie charts, press on the items in the legend. These are then stored
in the traits block in the TRAITCOLOR entry. Also, there is a menu button for determining how to represent
character-state changes along an edge. The choices are has hatches (short marks), labels, compact labels and
counts.

14

1.12 World map tab

The World Map tab shows a map of the world and places any traits data that comes with latitude and longitude
assignments on the map (see Fig. 1.11). To change the colors used in pie charts, press on the items in the legend.
They are stored in the traits block in the TAXONCOLOR entry. The world tab has a toolbar and side panel, the
latter is hidden by default, but can be opened using the toggle button at the top right of the tab.

This tab appears when the input data contains a traits block that has latitude and longitude specifications (see
Section B.2).

Figure 1.11: The world map tab for displaying haplotype locations of origin.

There is a Show menu button to determine whether country names, continent names and/or oceans should appear
as labels. There is a button to determine whether to show two copies of the map side-by-side for Pacific-centric
data. There is a button to zoom to the shown haplotype data.

1.13 Workflow graph tab

The workflow tab provides access to the workflow graph (see Fig. 1.12).

Figure 1.12: The workflow tab provides access to the workflow tab, for advanced users.

15

The workflow tab has a toolbar that contains a number of items, whose purpose and enabled state depends on
which nodes in the workflow graph are currently selected.

The first toolbar item will open the corresponding algorithm, text display or view tab, depending on whether the
selected node is an algorithm node, data node or view node. Double-clicking on a node has the same effect.

When a data node is selected, then the second toolbar item can be used to attach an additional algorithm to the
data node.

When an algorithm node is selected, then the next two items can be used either to duplicate the analysis, or to
delete it, respectively. Each algorithm node also carries a similar menu button.

There are two items for zooming in and out.

1.14 How to cite tab

The How to cite tab provides a description of the data and algorithms used, and provides the necessary citations
(see Fig. 1.13).

Figure 1.13: The how-to-cite tab provides methods summary of the data and algorithms, and provides all suggested
references for the methods used.

The toolbar of the input tab contains a button to copy the complete or selected content of the tab. There are
buttons to turn line-wrapping and lines numbers on and off.

If the input is a Nexus or SplitsTree file that contains a comment at the beginning of the file describing the source
of the data, then this will be reported at the top of the text area. This is followed by a description of the methods
used. Finally, all suggested references are listed.

1.15 Input editor tab

The Input editor tab provides an interactive editor for entering and parsing input data (see Fig. 1.14).

The toolbar of the input tab contains a button to copy the complete or selected content of the tab. There buttons
to turn line-wrapping and lines numbers on and off.

The program will try to guess to which input format the entered text adheres to and will indicate the name of
the format in the toolbar. When a valid format has been detected, then the run button will be enabled. Pressing
the run button will parse the data and launch an analysis of the entered data.

16

Figure 1.14: The editor tab is used to enter data into a new document. Pressing the run button will parse the
data and launch an analysis of the entered data.

The input editor can be opened from the File menu and is automatically open when the user imports a text or
file into the program that is not in one of the recognized input formats.

1.16 Report tabs

Report tabs are used to present the results of analyses such as Tajima’ D, phylogenetic diversity or Shapely values
as a text (see Fig. 1.15).

Figure 1.15: Report tabs are text tabs that are used to provide the result of an analysis, here the Shapely values
for a set of taxa based on splits.

The toolbar of the report tab contains a button to copy the complete or selected content of the tab. There are
buttons to turn line-wrapping and lines numbers on and off.

17

1.17 Text tabs

Text tabs are used to show the content of data blocks, in a choice of several different formats (see Fig. 1.16).

Figure 1.16: Text tabs are used to display the content of any of the data nodes in the workflow. Here we show
three such tabs, one for characters data, one for distance data and one for splits data.

The toolbar of any text tab contains a button to copy the complete or selected content of the tab. There are
buttons to turn line-wrapping and lines numbers on and off. There is a format pane that can be used to select
the desired display format and to specify any options associated with the format.

Such a text tab can be opened by selecting a data node item in the sidebar and then pressing the show/edit
button at the top of the sidebar, or by double-clicking on the item.

1.18 The sidebar

The sidebar (see Fig. 1.2) (figure part b) contains a representation of the workflow as a tree at the top, and the
algorithms tab pane at the bottom (figure parts c,d).

The workflow tree view contains a representation of all input data, computed data and algorithms used in the
computation. There are three types of nodes:

• data nodes that represent data blocks and result blocks,

• algorithm nodes that represent algorithms, and

• view nodes that represent visualizations.

Double-clicking on a data node will open a text tab displaying the corresponding data, or analysis result, if the
data block is a report. Double-clicking on an algorithm node will open the corresponding algorithm tab.

An algorithm tab has a run button (at the right) to execute the algorithm and may contain some optional input
items (below) to set parameters of the algorithm.

18

Figure 1.17: The first tab is used to specify the input files, the type of input (DNA or protein sequences) and
whether to use files or FastA records as input genomes. Also, specify the output file (and whether to store input
sequences as sequences or as references to files). The second tab is used to edit the labels of genomes. The third
tab is used to specify the database to compare against (downloaded from the SplitsTree page), the distance to
search in, and distance within which to include references.

1.19 The draft genome dialog

The SplitsTree App supports the calculation of the phylogenetic context of a draft prokaryotic genome [Bagci
et al., 2021]. One or more files (FastA format) each containing one or more sequences representing draft genomes
(or metagenomic assembly bins) can be imported into the program and then compared against a set of GTDB
reference genomes [Parks et al., 2018] using mash distances [Ondov et al., 2016] and then represented as a
phylogenetic outline.

The dialog is opened using the File->Analyze Draft Genomes... menu item and is set up using three tabs,
as shown in the Figure (see Fig. 1.17).

19

20

Chapter 2

Building trees and networks

2.1 Using the workflow

In SplitsTree4, data analysis was based on a simple linear sequence. To construct a Neighbor Net, for example,
one might input character data, apply a transform to infer a distance matrix, apply another transform to produce
the set of splits in the Neighbor Net and another transform for convert those splits into a network on the screen.

That simplicity came with limitations. For example, to compare the result of analyses using different parameters
or distance methods it was necessary to duplicate the whole file and start again.

The SplitsTree App implements a far more sophisticated system for workflows. It is still straightforward to run
a simple linear workflow as in SplitsTree4, but it is now possible to branch that workflow at any point, exploring
alternative parameters or methods. The use of frames make it easy to view the results of different analyses
side-by-side.

The branching structure of a document’s workflow can be viewed in the side panel (as a hierarchy) or in the
workflow panel (as a graph). To illustrate, open the example file ungulates.nex which can be found in the
directory publications/WelkerEtal2015 in the Examples directory. By default, the SplitsTree App creates a
network by running Neighbor Net and using the p-distance. Switching to the workflow panel displays the (linear)
workflow for this initial analysis (see Fig. 2.1).

In this graph, nodes correspond to algorithms (indicated by a icon) or data (indicated by an icon). From
the algorithm nodes you can edit the parameters of the method. Selecting an algorithm node and clicking the
delete button (top of pane) removes that node and any descendants of that node.

Suppose we want to compare a network computed by the Neighbor Net algorithm with a tree obtained using
BioNJ. Assuming both are to be computed from the same distance matrix, we can select the corresponding node
and choose BioNJ from the popup menu marked with a plus (either on the node or in the toolbar) (see Fig. 2.2).
SplitsTree then constructs and displays the BioNJ tree. Switching back to the workflow panel we see that a new
sequence of nodes has branched off the distances node, indicating the revised analysis.

This analysis also creates a new window tab. Right-click on a tab to get a context menu that allows you to split
the main tab pane into two parts, then drag the tabs to the left or right panes to view both the Neighbor Net

Figure 2.1: Right hand side of the workflow created when ungulates.nex is opened.

21

Figure 2.2: Attaching a BioNJ algorithm to an existing Distances block.

Figure 2.3: Right hand side of the workflow after adding a BioNJ analysis.

network and the BioNJ tree side-by-side.

2.2 Building trees

SplitsTree implements four standard tree construction methods:

• NJ (Neighbor-Joining), the original method of Saitou and Nei [Saitou and Nei, 1987].

• BioNJ, the modification of NJ introduced by Gascuel to reduce variance of the node-to-node estimates
[Gascuel, 1997].

• UPGMA, the agglomerative method for constructing ultrametric (molecular clock) trees, introduced by
Sokal and Sneath [Sokal and Michener, 1958].

• Buneman, a method for inferring compatible splits (and therefore trees) from distances which tends to
produce trees with large multifurcations [Bandelt and Dress, 1992].

Each of these can be called from the Trees menu, or added as an algorithm in the workflow. There are several op-
tions for displaying trees, available by clicking on one of the two buttons on the right-hand-side of the tree window:

.
(see Section 1.6).

22

2.3 Neighbor Net and other split network methods

2.3.1 Neighbor Net

Given a distance matrix as input, the Neighbor Net algorithm operates in three stages. First, an agglomerative
method is used to identify a circular ordering of the taxa. The splits computed by the algorithm are a subset of the
set of all splits that can be formed from consecutive sets of taxa in that ordering. Second, a heavily customized
algorithm is used to efficiently compute split weights. Those with zero weight are removed (use a split filter to
remove splits with larger weight). Finally, a planar split network algorithm takes the weighted splits and produces
the split network representation. A complete description of the entire process is available in Bryant and Huson
[2023].

There is a single option available in Neighbor Net, the method used to infer split weights. We found that the
Active Set method performed better than the other methods, and this is the default and recommended option.
We have left the other algorithms as options in order to enable a repeat of the analysis in Bryant and Huson
[2023].

When Neighbor Net is called, SplitsTree produces a split block and a split network block in the workflow. As we
stress in Huson and Bryant [2006], the main information in the network is the set of weighted splits. Think of the
network as a means of visualising the splits, in the sense that the same set of splits can be represented in several
different ways.

2.3.2 Manipulating split networks

To rotate or flip the entire network, use the toolbar revealed by pressing the preferences button at the top right of
the split network panel, making sure that none of the nodes or edges in the network are selected (see Section 1.10).

Click on an edge in the split network to select that split. The edges associated to that split can be rotated using
the rotate buttons in the toolbar or the arrows in the side panel which appears when you click the button on the
right (see Fig. 2.4).

Figure 2.4: If one or more splits are selected, then highlighted buttons can be used to change the angles of the
selected splits.

The traditional approach to displaying split networks marks out the splits with a mesh of quadrilaterals and
polygons. The outline representation Bagci et al. [2021] constructs just the outer perimeter of the network. This
is sufficient to represent all the split weights, and is generally much faster to compute and draw. To switch back

23

and forward between the graph mode and the outline mode use the pop-up menu at the left of the toolbar (see
Section 1.10).

2.3.3 Split Decomposition

Given a distance matrix, the Split Decomposition method [Bandelt and Dress, 1992] can be selected in the Network
menu, or on a distances node in the workflow. Split Decomposition is a predecessor of Neighbor Net, though the
structures of the two methods are quite different. Split Decomposition works by inferring a set of splits satisfying
a quartet condition in the distance matrix. Split Decomposition produces a set of weakly compatible splits and,
as such, can produce more complex split networks than those produced by Neighbor Net. The resulting split
network will not necessarily be planar. In practice, the conservative nature of the selection criteria means that
Split Decomposition produces far fewer splits than Neighbor Net.

2.3.4 Splits in characters

SplitsTree includes several methods for extracting splits directly from character data. These methods do not
assume any explicit model for sequence evolution. As such they do not correct for hidden mutations. However,
they can reveal important structure within sequences from closely related organisms, as well as artefacts resulting
from data handling problems.

The simplest is BinaryToSplits (see Section C.1), which applies to binary data only. Each binary character
determines a split separating those with allele/state 0 and those with allele/state 1. The weight assigned to a
split equals the summed weight for all characters inducing that split, defaulting to a count of those characters
if weights are not specified. The BinaryToSplits algorithm is available via the workflow graph or workflow
hierarchy. The user can specify a weight/count threshold on the splits, a cap on the maximum dimension of the
split network (see Section C.3) and the option to include all ‘trivial’ splits separating one taxon from the remainder
automatically.

The DNAtoSplits method (see Section C.1) carries out a similar analysis but on nucleotide data. Splits are either
determined via an RY coding (AG vs CT) or by splitting the most frequent state (assumed ancestral) from the
other states (assumed derived) at each site.

The Parsimony Splits method (see Section C.1), introduced by Bandelt and Dress [1992], produces a set of weakly
compatible splits directly from character taxa. The method is quartet based, like Split Decomposition, but for
each four taxa, it determines the two most frequent pairings of two taxa versus the other two taxa.

2.4 Haplotype networks

A haplotype network is an elegant and efficient way to represent character or sequence data. Each node corresponds
to a particular sequence with the size of the node proportional to the number of copies of that sequence in the
data. Sequences which differ in one position are connected by an edge which is (optionally) labelled by the
exact difference. Different methods for constructing haplotype networks generate different graphs for connecting
sequences at larger distances. For them all, a key property is that given one sequence, the network, and the
mutations along each edge, the entire alignment can be reconstructed.

SplitsTree provides implementations of two widely-used haplotype network methods, MinSpanningNetwork [Ex-
coffier and Smouse, 1994] and MedianJoining [Bandelt et al., 1999]. Haplotype networks are drawn as graphs
with each edge labelled by marks indicating the number of mutations/differences along that edge. This can be
modified using the side panel which appears when clicking the preferences button at the top right of the network
panel.

24

2.4.1 Minimum spanning network

A minimum spanning tree for a graph is a connected subgraph of minimum weight. Sometimes there is a unique
minimum spanning tree; other times there are multiple.

In this context, the graph contains a node for each input sequence and edge between every pair of nodes. The
length of each edge is the Hamming distance between the corresponding sequences. Other distance measures can
be used, but the Hamming distance is appropriate for Haplotype Network construction.

The minimum spanning network is formed from all those edges in the graph which appear in every minimum
spanning tree (see Section C.2).

A minimum spanning network is constructed from a characters block by first determining Hamming distances
(right-click on the characters block and select Add Algorithm -> Hamming distance). Then right-click on the
distance block produced and add the Min Spanning Network algorithm.

2.4.2 Median Joining network

Median Joining (see Section C.1) is probably the most highly-cited method for constructing phylogenetic networks.
The implementation in SplitsTree is based on the method described in Bandelt et al. [1999]. The Median-Joining
network method makes repeated use of minimum spanning networks, each time augmenting the set of observed
sequences with putative ancestral sequences.

A Median-Joining network is constructed from a characters block via the Network menu, or by adding an algorithm
to the workflow. The method comes with a single option ε that is an integer controlling a threshold determining
when two sequences are considered adjacent. In Bandelt et al. [1999], ε varies between 0, 1 and 2.

2.5 Rooted phylogenetic networks

2.5.1 Implicit vs explicit trees and networks

A haplotype network is a direct representation of the input data and a split network represents groupings or splits
between taxa. Both are examples of so-called implicit or data-display networks that aim at visualizing evolutionary
data. In contrast, an explicit network is a representation of the putative evolutionary history, including reticulate
events such as speciation-by-hybridization or horizontal gene transfer.

Strictly speaking, unrooted phylogenetic trees, too, are implicit representations of evolutionary data, whereas
rooted phylogenetic trees have a direction (away from the root) and this allows branching nodes to be explicitly
interpreted as representing speciation events.

Explicit phylogenetic networks are necessarily rooted. The Autumn algorithm [Huson and Linz, 2018] (see Sec-
tion C.4) produces an explicit rooted phylogenetic network in which reticulations may be interpreted as putative
hybridization or HGT events. However, just because a phylogenetic tree has a root does not mean that it is
explicit. For example, the Cluster Network algorithm (see Section C.4) takes as input a set of rooted trees and
aims at displaying all their clusters as a rooted network (in the hardwired sense [Huson et al., 2012]). Here, the
reticulate nodes do not have a direct biological interpretation.

2.5.2 Hybridization networks

In mathematical phylogenetics, a hybrization network is a rooted phylogenetic network that contains or displays an
input set of rooted phylogenetic trees. Usually, the requirement is that such a network minimizes the “hybridization

25

Figure 2.5: On the left we show 10 different gene trees for the NADH dehydrogenase-like complex in waterlilies
[Gruenstaeudl, 2019] and on the right we show a network that contains all 10 trees, with hybridization number
h = 5, computed using the PhyloFusion algorithm.

26

number”, that is, the number of reticulations. (To be precise, a reticulation node of indegree k contributes k− 1
toward the hybridization number.)

SplitsTree currently offers two algorithms for computing such networks for real world data. The Autumn algorithm
[Huson and Linz, 2018] (see Section C.4) takes as input two rooted phylogenetic trees and computes, as output the
list of all different hybridization networks that contain the two trees. The input trees may have multifurcations and
unequal taxon sets. This algorithm aims at providing an exact solution (networks that minimize the hybridization)
of a computational hard problem, so it might not terminate if the input trees have too many conflicts.

The PhyloFusion algorithm [Zhang et al., 2023, 2024] takes as input multiple rooted trees and computes one or
more rooted phylogenetic networks that display all the input trees. Again, we allow multifurcations and missing
taxa. This very fast heuristic aims at minimizing the hybridization number. With this, we provide a versatile
method for exploring the practical use of rooted networks in phylogenetics (see Section C.4) (see Fig. 2.5).

2.5.3 How to compute a rooted network from rooted trees

Assume that you have a collection of phylogenetic trees for which you would like to explore the use of rooted
phylogenetic networks to represent them. To obtain a useful network, you must setup a pipeline consisting
of several steps (see Fig. 2.6). In this analysis, incorrect edges are particularly harmful because they generate
unnecessary reticulations and so it is important that the input trees have confidence values (such as bootstrap
support values, say) associated with the edges so that low-confidence can be ignored.

• First, use the Reroot or Reorder algorithm (see Section C.4) to ensure that all trees are correctly rooted
(using either midpoint- or outgroup rooting).

• Second, use the Trees Filter (see Section C.4) to select the subset of trees that you would like to place into
the network.

• Third, use the Trees Edges Filter (see Section C.4) to contract any low-confidence edges. By default, the
confidence threshold is set to 70.

• Finally, use the Phylo Fusion algorithm (see Section C.4) to compute a rooted network that contains all
input trees.

2.5.4 Cluster networks

The Cluster Network algorithm extracts all clusters from an input set of rooted phylogenetic trees and computes a
network using the cluster-popping algorithm [Huson et al., 2012]. This is a fast algorithm that provides a network
that contains all input trees. However, it does not aim at minimizing the hybridization number.

27

Figure 2.6: For a set of 48 genes in waterlilies [Gruenstaeudl, 2019], on the left we see that 10 different gene
trees for the NADH dehydrogenase-like complex have bee selected. On the right we see a hybridization network
computed using the PhyloFusion algorithm.

28

Chapter 3

Consensus trees and networks

The methods in this chapter all attempt to summarise information contained in a set of trees. (Most also work if
the input contains rooted phylogenetic networks, in which case the calculations are based on “hardwired clusters”
contained in the networks.) There are several possible sources:

1. Trees returned from different genes or loci.

2. Trees produced from different methods.

3. Trees produced from different bootstrap replicates.

4. Trees sampled from the posterior distribution in a Bayesian analysis.

One of the big improvements with the most recent version of SplitsTree is that the routines for reading in files of
trees can now cope with large tree files or large trees.

3.1 Consensus trees

A consensus method summarises a set of trees (on the same set of taxa) with a single tree. It can be thought of
as analogous to an average tree or median tree.

3.1.1 Average consensus method

The average consensus method implements an idea of Lapointe and Cucumel [1997]. Additive (leaf to leaf)
distance matrices are constructed for each tree. This can take some time on larger files. The average of these
matrices are then used to construct either a Neighbor-Joining tree or a NeighborNet.

The method can be called from the workflow by selecting a trees block and adding the algorithm ‘Average
Consensus’ (see Section C.4). Alternatively, add an ‘Average Distances’ algorithm to the tree block. This creates
a new distance block which can be output or analysed using a method of choice.

3.1.2 Strict-, majority- and greedy-consensus methods

The strict consensus, majority rule consensus and greedy consensus are three of the oldest and most widely used
consensus methods in phylogenetics.

• The strict consensus tree is formed from all splits appearing in all trees;

29

• The majority rule tree is formed from all splits appearing in over half the trees;

• The greedy consensus tree is constructed using a greedy algorithm aimed at producing a collection of splits
with maximal weight, the weight of each split given by the number of trees containing it.

These methods are available from the Trees menu in the menu bar or by adding an algorithm to the trees block
in the workflow.

Note that there is a slight difference in the consensus tree depending on whether the input trees are to be
considered rooted or unrooted. For example the two trees

((a,b),c,d) and (a,b,(c,d));

share a split ab|cd which would appear in their unrooted consensus tree, but they share no clusters, so their rooted
consensus tree would be completely unresolved.

3.1.3 Densi-tree consensus

The densi-tree consensus [Bouckaert, 2010] shows the greedy consensus tree together with a rendering of all input
trees (see Section 1.9).

3.2 Networks representing trees

3.2.1 Consensus networks

Consensus networks are based on the idea of using split networks to represent more splits than can appear in a single
tree Bandelt [1995], Holland et al. [2004]. They can be constructed using the menu command Network>Consensus
network, or by adding an algorithm to a trees block in the workflow. Note that, with the menu command, if there
is more than one trees block then SplitsTree will ask the user to select one.

SplitsTree implements several weighting methods for the splits. These are used to determine the split weights
used in the output tree or network. A standard analysis consensus network analysis will use the frequency (or
count) of a split as the weight used for selecting and displaying splits.

• Mean - use the mean of the weights in the input trees. This treats different trees as estimations of the
distances between taxa.

• TreeSizeWeightedMean - use the mean of the weights in the input trees after normalizing each of the
input trees to total length 1. This should be used if the different trees are on different scales, e.g. because
they were computed using different methods.

• Median - use the median weight. Use as an alternative to mean weights.

• Count - use the number of trees that contain a split as its weight. This is useful to emphasize the conflicts
in different trees when using a network for consensus.

• Sum - use the sum over all weights in the input trees. Similar use-case to counts.

• Uniform - give all splits weight 1. This emphasizes the topology of the consensus tree or network.

• TreeNormalizedSum - use the sum over all weights in the normalized input trees. Not sure when you would
want to use this.

The threshold percent controls how many splits are included in the network. When the weight is computed from
split counts it specifies the percentage of trees which a split needs to be contained in for the split to be included
in the network. Reducing this threshold will increase the number of splits, giving a more complex network. The

30

Figure 3.1: For a Bayesian profile of trees (from the Beast examples directory), we show the densi-tree consensus
on the left and the outline consensus on the right (rooted by the three taxa at the top of both diagrams).

High Dimension Filter is the same as that used in the split weight filter (see Section C.3), greedily removing splits
which generate high dimensional boxes in the diagram.

3.2.2 Consensus outline

The consensus outline method (see Section C.4) takes as input a set of trees and produces as output a set of
circular splits that are displayed either as a planar split network or as a phylogenetic outline. It operates by greedily
selecting a subset of input splits that are compatible with some circular ordering of the input tree, computed using
the PQ-tree algorithm [Booth and Lueker, 1976]. One possible application is as an alternative to the densi-tree
visualization (see Fig. 3.1).

3.2.3 Confidence networks

The idea behind a confidence network (see Section C.4) is to choose the threshold in a consensus network so that at
least 95% of the trees have all their splits contained in that network. The method was originally designed as a way
to create confidence intervals from bootstrap distributions Huson and Bryant [2006], however the dimensionality
of the problem, and shortcomings of empirical bootstrap distributions, meant that the confidence sets produced
were massive. The same machinery can be readily applied to samples from the posterior distribution of trees in a
Bayesian analysis, in which case the network represents a confidence set.

The main option in a confidence network is the level, which is 0.95 by default. This is the proportion of input
trees which will have their splits contained in the network. Decreasing this number produces smaller networks.

31

32

Appendix A

The main menu bar

All functionality of the program can be used directly from the main window. In addition, the program provides
menus to access the most often used features.

A.1 The File menu

This menu has the following items:

• New. . . - Create a new document and open it

• Open. . . - Open an existing file and process it

• Replace Data. . . - Replace the current input data

• Edit Input. . . - Open the input editor tab

• Analyze Draft Genomes. . . - Open the microbial draft genome analyzer

• Save - Save the current document

• Save As. . . - Save the current document to a chosen file

• Page Setup. . . - Page setup for printing

• Print. . . - Print the current tab

• Close - Close the current document

A.2 The Edit menu

This menu has the following items:

• Undo - Undo

• Redo - Redo

• Cut - Copy selected text in a text tab or nodes in a workflow tab

• Copy - Copy selected text in a text tab or nodes in a workflow tab

• Copy Newick - Copy tree(s) and networks(s) from the current tab to the system clipboard

33

• Copy Image - Copy an image of the current tab to the system clipboard

• Paste - Paste text in a text tab or nodes in a workflow tab

• Duplicate - Duplicate selected nodes in a workflow tab

• Delete - Delete selected text in a text tab or nodes in a workflow tab

• Find. . . - Open the find dialog for the current tab

• Find Again - Find next match in the current tab

• Replace. . . - Open the replace dialog for the current tab

• Goto Line. . . - Go to a specific line in current text tab

A.3 The Select menu

This menu has the following items:

• Select All - Select all taxa or text in the current tab

• Select None - De-select all taxa or text in the current tab

• Select Inverse - Invert the selection in the current tab

• From Previous Window - Select taxa in current tab that were selected in the previously focused window

• Brackets - Select text between matching brackets

• Compatible Sites - Select all compatible sites in the alignment tab

A.4 The View menu

This menu has the following items:

• Use Dark Theme - Toggle dark mode

• Enter Full Screen - Toggle full-screen mode

• Increase Font Size - Increase the font size in the current tab

• Decrease Font Size - Decrease the font size in the current tab

• Zoom In - Increase the scale factor in the current tab

• Zoom Out - Decrease the scale factor in the current tab

• Zoom In Horizontal - Increase the horizontal scale factor in the current tab

• Zoom Out Horizontal - Decrease the horizontal scale factor in the current tab

• Reset - Reset the scale factor in the current tab

• Rotate Left - Left rotate the tree or network, or selected splits, in the current tab

• Rotate Right - Right rotate the tree or network, or selected splits, in the current tab

• Flip - Flip the tree or network in the current tab

• Show Scale Bar - Show a scale bar in the current tab

34

• Show QR Code - Show or hide a QR code for the tree or network in the current tab

• Layout Labels - Rerun label layout

A.5 The Data menu

This menu has the following items:

• Filter Taxa - Show the filter taxa tab

• Filter Characters. . . - Shows the alignment tab

• Group Identical Haplotypes. . . - Group identical haplotypes and open as new document

• Filter Trees - Show the filter trees tab

• Filter Splits - Show the filter splits tab

• Splits Slider - Show the splits slider (filter by weight) tab

• Edit Traits - Show the edit traits tab

A.6 The Distances menu

This menu has the following items:

• P Distances - Compute distances based on the normalized number of character-state differences

• Log Det - Compute distances using the Log-Det method

• Jukes Cantor - Compute distances using the Jukes-Cantor model

• K2P - Compute distances using the Kimura-2P model

• F81 - Compute distances using the Felsenstein-1981 model

• HKY 85 - Compute distances using the Hasegawa-Kishino-Yano model

• F84 - Compute distances using the Felsenstein-1984 model

• Protein ML Dist - Compute distances for proteins using maximum-likelihood estimation

• Gene Content Distance - Compute distances based on the presence/absence of genes

A.7 The Tree menu

This menu has the following items:

• NJ - Compute a tree from distances using the Neighbor-Joining method

• BioNJ - Compute a tree from distances using the Bio-NJ method

• UPGMA - Compute a rooted tree from distances using the UPGMA method

• Buneman Tree - Compute a tree from distances using the Buneman tree method

• Consensus Tree - Compute a consensus tree

35

• Minimum Spanning Tree - Compute a minimum spanning tree from distances

• Reroot Or Reorder Trees - Open the reroot or reorder tab

• Show Single Tree - Show a single tree in a tab

• Show Tree Pages - Show multiple trees in a tab

• Show Tanglegram - Show two trees as a tanglegram

• Show DensiTree - Show a Bayesian chain of trees as a densi-tree

A.8 The Network menu

This menu has the following items:

• Neighbor Net - Compute a planar split network from distances using the Neighbor-Net method

• Split Decomposition - Compute a split network from distances using the split-decomposition method

• Parsimony Splits - Compute a split network from DNA sequences using the parsimony-splits method

• Consensus Splits - Open the consensus splits tab

• Consensus Network - Compute a consensus network from trees

• Consensus Outline - Compute a consensus outline from trees

• Super Network - Compute a super network from trees on unequal taxon sets

• Median Joining Network - Compute a haplotype network from DNA sequences using the median-joining
algorithm

• Min Spanning Network - Compute a minimum spanning network from distances

• World Map - Show the world map tab

• Hybridization Network - Compute a minimum hybridization network for two rooted trees using the autumn
algorithm

• Cluster Network - Compute a cluster network from trees

A.9 The Analysis menu

This menu has the following items:

• Bootstrap Tree - Perform bootstrapping on a tree calculation from sequences

• Bootstrap Tree as Network - Perform bootstrapping on a tree calculation from sequences, producing a
network

• Bootstrap Splits Network - Perform bootstrapping on a split network calculation from sequences

• Estimate Invariable Sites - Estimate the proportion of invariable sites

• Compute Delta Score - Compute the delta score from distances

• Run Phi Test for Recombination - Run the Phi Test to detect recombination in sequences

• Compute Tajima’s D - Run the Phi Test to detect recombination in sequences

36

• Splits Phylogenetic Diversity - Compute the phylogenetic diversity for selected taxa on splits

• Splits Shapley Values - Compute Shapely values on splits

• Tree Phylogenetic Diversity - Compute the phylogenetic diversity for selected taxa on trees

• Rooted Tree Fair Proportion Diversity Index - Compute rooted-tree fair-proportion diversity index

• Rooted Tree Equal Splits Diversity Index - Compute rooted-tree equal-splits diversity index

• Unrooted Tree Shapley Values - Compute Shapely values on unrooted trees

• PCoA - Perform principal coordinate analysis on distances

• Show Workflow - Show the workflow tab

A.10 The Window menu

This menu has the following items:

• Show Message Window. . . - Show or hide the message window

• Set Window Size. . . - Set the window size

• Untitled

A.11 The Help menu

This menu has the following items:

• Check For Updates. . . - Check whether an update is available for download

• About. . . - Show splash screen (authors, version number and license).

37

38

Appendix B

Main data blocks

SplitsTree is organized around data blocks that correspond to “Nexus” blocks [Maddison et al., 1997].

B.1 Taxa block

This block maintains the list of all taxa in the analysis. There is a fixed number (nTax) of taxa and each has an
id 1..nTax and an unique label. Optionally, an info string can be provided for each taxon. Also, a display label
may be provided for each taxon. This can include certain HTML tags that are used to render the label.

BEGIN TAXA;

[TITLE title;]

DIMENSIONS NTAX=number-of-taxa;

[TAXLABELS

list-of-labels

;]

[TAXINFO

list-of-info-items (use ’null’ for missing item)

;]

[DISPLAYLABELS

list-of-html-strings (use ’null’ for missing item)

;]

END;

B.2 Traits block

This block contains traits associated with the input taxa. Each trait has a label, optional latitude and longitude,
and a value, which can either be a number or a string.

BEGIN TRAITS;

[TITLE {title};]

DIMENSIONS [NTAX=number-of-taxa] NTRAITS=number-of-traits;

[FORMAT

[LABELS={YES|NO}]

[MISSING=symbol]

[SEPARATOR={COMMA|SEMICOLON|WHITESPACE}]

;]

[TRAITLATITUDE latitude-trait-1 latitude-trait-2 ... latitude-trait-n;

TRAITLONGITUDE longitude-trait-1 longitude-trait-2 ... longitude-trait-n;]

[TRAITCOLOR color-trait-1 color-trait-2 ... color-trait-n;]

39

[TAXONCOLOR color-taxon-1 color-taxon-2 ... color-taxon-ntax;]

TRAITLABELS label-trait-1 label-trait-2 ... label-trait-n;

MATRIX

trait data in specified format

;

END;

B.3 Characters block

This block maintains a set of characters or a multiple sequence alignment. There is a fixed number of taxa and
characters or positions. Several different formats are supported. Characters can have weights and both characters
and their states can have labels.

BEGIN CHARACTERS;

[TITLE {title};]

[LINK {type} = {title};]

DIMENSIONS [NTAX=number-of-taxa] NCHAR=number-of-characters;

[FORMAT

[DATATYPE={STANDARD|DNA|RNA|PROTEIN|MICROSAT}]

[RESPECTCASE]

[MISSING=symbol]

[GAP=symbol]

[MatchChar=symbol]

[SYMBOLS="symbol symbol ..."]

[LABELS={NO|LEFT}]

[TRANSPOSE={NO|YES}]

[INTERLEAVE={NO|YES}]

[TOKENS=NO]

;]

[CHARWEIGHTS wgt_1 wgt_2 ... wgt_nchar;]

[CHARSTATELABELS character-number [character-name][/state-name [state-name...]], ...;]

[CHARLABELS character-name [character-name...];]

MATRIX

sequence data in specified format

;

END;

B.4 Distances block

This block maintains a distance matrix of size nTax times nTax.

BEGIN DISTANCES;

[TITLE {title};]

[LINK {type} = {title};]

[DIMENSIONS NTAX=number-of-taxa;]

[FORMAT

[TRIANGLE={LOWER|UPPER|BOTH}]

[[NO] DIAGONAL]

[LABELS={LEFT|NO}]

;]

MATRIX

distance data in specified format

;

END;

40

B.5 Trees block

This block maintains a list of trees. These can be rooted or unrooted phylogenetic trees, or rooted phylogenetic
networks. Trees can partial in the sense that they need to contain all taxa.

BEGIN TREES;

[TITLE {title};]

[LINK {type} = {title};]

[PROPERTIES [PARTIALTREES={YES|NO}] [ROOTED={YES|NO}] [RETICULATED={YES|NO}];]

[TRANSLATE

nodeLabel1 taxon1,

nodeLabel2 taxon2,

...

nodeLabelN taxonN

;]

[TREE name1 = tree1-in-Newick-format;]

[TREE name2 = tree2-in-Newick-format;]

...

[TREE nameM = treeM-in-Newick-format;]

END;

B.6 Splits block

This block maintains a set of splits, usually with weights, sometimes with confidence values, and usually with a
suitable cycle for layout purposes.

BEGIN SPLITS;

[TITLE {title};]

[LINK {type} = {title};]

[DIMENSIONS [NTAX=number-of-taxa] [NSPLITS=number-of-splits];]

[FORMAT

[Labels={LEFT|NO}]

[Weights={YES|NO}]

[Confidences={YES|NO}]

[Intervals={YES|NO}]

[ShowBothSides={NO|YES}]

;]

[Threshold=non-negative-number;]

[PROPERTIES

[Fit=non-negative-number]

[{Compatible|Cyclic|Weakly Compatible|Incompatible]

;]

[CYCLE [taxon_i_1 taxon_i_2 ... taxon_i_ntax];]

[SPLITSLABELS label_1 label_2 ... label_nsplits;]

MATRIX

[label_1] [weight_1] [confidence_1] split_1,

[label_2] [weight_2] [confidence_2] split_2,

....

[label_nsplits] [weight_nsplits] [confidence_nsplits] split_nsplits[,]

;

END;

B.7 Network block

Maintain a network, such as a haplotype network or just a set of points (for PCoA).

BEGIN NETWORK;

[TITLE {title};]

[LINK {type} = {title};]

41

[DIMENSIONS [NVertices=number-of-nodes] [NEdges=number-of-edges];]

[TYPE {HaplotypeNetwork|Points|Other};]

[FORMAT

;]

[PROPERTIES

[info =’ information string to be shown with plot’]

;]

VERTICES

ID=number [LABEL=label] [x=number] [y=number] [key=value ...],

...

ID=number [LABEL=label] [x=number] [y=number] [key=value ...]

;

EDGES

ID=number SID=number TID=number [LABEL=label] [key=value ...],

...

ID=number SID=number TID=number [LABEL=label] [key=value ...]

;

END;

B.8 View block

This block represents a viewer.

BEGIN VIEW;

[TITLE title;]

[LINK {type} = {title};]

NAME <name>;

INPUT <input-block-name>;

[OPTIONS

<name>=<value>,

...

<name>=<value>

;]

END;

B.9 Algorithms block

This block represents an algorithm.

BEGIN ALGORITHM;

[TITLE <title>;]

[LINK <parent-block-type> = <parent-title>;]

NAME <name>;

[OPTIONS

<name>=<value>,

...

<name>=<value>

;]

END;

B.10 Report block

This block represents a textual report.

BEGIN REPORT;

[TITLE title;]

[LINK {type} = {title};]

42

TEXT

text...

;

END;

B.11 Sets block

This block represents a collection of taxon sets and/or character sets.

BEGIN SETS;

[TITLE {title};]

[TAXSET {name}={list of names and/or IDS};]

...

[CHARSET {name}={list of positions};]

...

END;

B.12 SplitsTree6 block

This block holds program-specific data and its presence in a file indicates that the file was generated by SplitsTree6
and represents a complete analysis.

BEGIN SPLITSTREE6;

DIMENSIONS nDataNodes=number nAlgorithms=number;

PROGRAM version=version-string;

WORKFLOW creationDate=long;

END;

B.13 Genomes block

This block represents a collection of genomes.

BEGIN GENOMES;

[TITLE {title};]

[LINK {type} = {title};]

[DIMENSIONS NTAX=number-of-taxa;]

[FORMAT

[LABELS={YES|NO}]

[ACCESSIONS={YES|NO}]

[MULTIPART={YES|NO}]

[FILES={YES|NO}]

;]

MATRIX

[label] [accession] length {sequence | [#parts] length {sequence|{file:.. offset}} .. length {sequence|{file offset}}},

...

[label] [accession] length {sequence | [#parts] length {sequence|{file:.. offset}} .. length {sequence|{file offset}}}

;]

END;

43

44

Appendix C

Algorithms

Here we list of all provided algorithms, organized by input data.

C.1 Algorithms on a Characters Block

P Distance

The P Distance algorithm takes a Characters block as input and produces a Distances block as output. It computes
the normalized Hamming distance. The algorithm has the following options:

HandleAmbiguousStates = {Ignore | AverageStates | MatchStates} - choose how to handle ambiguous states (nucleotide

data only)

Reference: [Hamming, 1950]

Hamming Distance

The Hamming Distance algorithm takes a Characters block as input and produces a Distances block as output.
It computes the Hamming distance, that is the number of differences between sequences The algorithm has the
following options:

HandleAmbiguousStates = {Ignore | AverageStates | MatchStates} - choose how to handle ambiguous states (nucleotide

data only)

Reference: [Hamming, 1950]

Log Det

The Log Det algorithm takes a Characters block as input and produces a Distances block as output. It computes
distances using the Log-Det method. The algorithm has the following options:

PropInvariableSites = <Double> - proportion of invariable sites

FudgeFactor = <Boolean> - input missing matrix entries using LDDist method

FillZeros = <Boolean> - replace zeros with small numbers in rows/columns with values

Reference: [Steel, 1994]

45

Jukes Cantor Distance

The Jukes Cantor Distance algorithm takes a Characters block as input and produces a Distances block as output.
It calculates distances under the Jukes-Cantor model. The algorithm has the following options:

PropInvariableSites = <Double> - proportion of invariable sites

SetSiteVarParams = {fromChars | defaultValues} - set site variation parameters to default values, or to estimations from

characters

Reference: [Jukes and Cantor, 1969]

K2P Distance

The K2P Distance algorithm takes a Characters block as input and produces a Distances block as output. It
calculates distances under the Kimura-2P model. The algorithm has the following options:

TsTvRatio = <Double> - ratio of transitions vs transversions

Gamma = <Double> - alpha value for the Gamma distribution

PropInvariableSites = <Double> - proportion of invariable sites

SetSiteVarParams = {fromChars | defaultValues} - set site variation parameters to default values, or to estimations from
characters

UseML_Distances = <Boolean> - use maximum likelihood estimation of distances (rather than exact distances)

Reference: [Kimura, 1980]

F81 Distance

The F81 Distance algorithm takes a Characters block as input and produces a Distances block as output. It
calculates distances under the Felsenstein-81 model. The algorithm has the following options:

BaseFrequencies = <doubleArray> - base frequencies (in order ACGT/U)

SetBaseFrequencies = {fromChars | defaultValues} - set base frequencies to default values, or to estimations from characters
(using Capture-recapture for invariable sites)

PropInvariableSites = <Double> - proportion of invariable sites

SetSiteVarParams = {fromChars | defaultValues} - set site variation parameters to default values, or to estimations from
characters

UseML_Distances = <Boolean> - use maximum likelihood estimation of distances (rather than exact distances)

Reference: [Felsenstein, 1981]

HKY85 Distance

The HKY85 Distance algorithm takes a Characters block as input and produces a Distances block as output. It
calculates distances under the Hasegawa-Kishino-Yano model. The algorithm has the following options:

TsTvRatio = <Double> - ratio of transitions vs transversions

BaseFrequencies = <doubleArray> - base frequencies (in order ACGT/U)

SetBaseFrequencies = {fromChars | defaultValues} - set base frequencies to default values, or to estimations from characters
(using Capture-recapture for invariable sites)

PropInvariableSites = <Double> - proportion of invariable sites

46

SetSiteVarParams = {fromChars | defaultValues} - set site variation parameters to default values, or to estimations from

characters

Reference: [Hasegawa et al., 1985]

F84 Distance

The F84 Distance algorithm takes a Characters block as input and produces a Distances block as output. It
calculates distances under the Felsenstein-84 model. The algorithm has the following options:

BaseFrequencies = <doubleArray> - base frequencies (in order ACGT/U)

SetBaseFrequencies = {fromChars | defaultValues} - set base frequencies to default values, or to estimations from characters
(using Capture-recapture for invariable sites)

PropInvariableSites = <Double> - proportion of invariable sites

SetSiteVarParams = {fromChars | defaultValues} - set site variation parameters to default values, or to estimations from
characters

UseML_Distances = <Boolean> - use maximum likelihood estimation of distances (rather than exact distances)

Reference: [Felsenstein and Churchill, 1996]

GTR Distance

The GTR Distance algorithm takes a Characters block as input and produces a Distances block as output. It
calculates distances under the general time-reversible model. The algorithm has the following options:

PropInvariableSites = <Double> - proportion of invariable sites

SetSiteVarParams = {fromChars | defaultValues} - set site variation parameters to default values, or to estimations from
characters

RateMatrix = <doubleSquareMatrix> - rate matrix for GTRDistance (in order ACGT/U)

UseML_Distances = <Boolean> - use maximum likelihood estimation of distances (rather than exact distances)

Reference: [Tavar, 1986]

Protein ML Distance

The Protein ML Distance algorithm takes a Characters block as input and produces a Distances block as output.
It computes distances for proteins using maximum-likelihood estimation. The algorithm has the following options:

Model = {cpREV45 | Dayhoff | JTT | mtMAM | mtREV24 | pmb | Rhodopsin | WAG} - choose an amino acid substitution model

PropInvariableSites = <Double> - proportion of invariable sites

Gamma = <Double> - alpha parameter for gamma distribution. Negative gamma = Equal rates

Reference: [Swofford et al., 1996]

Dice Distance

The Dice Distance algorithm takes a Characters block as input and produces a Distances block as output. It
computes distances using the DiceDistance coefficient distance.

Reference: [Dice, 1945]

47

Jaccard Distance

The Jaccard Distance algorithm takes a Characters block as input and produces a Distances block as output. It
computes distances based on the JaccardDistance index.

Reference: [Jaccard, 1901]

Gene Content Distance

The Gene Content Distance algorithm takes a Characters block as input and produces a Distances block as output.
It computes distances based on the presence/absence of genes.

Reference: [Huson and Steel, 2004]

Gene Sharing Distance

The Gene Sharing Distance algorithm takes a Characters block as input and produces a Distances block as output.
It computes distances using the gene-sharing distance.

Reference: [Snel et al., 1997]

Upholt Restriction Distance

The Upholt Restriction Distance algorithm takes a Characters block as input and produces a Distances block as
output. It calculates distances for restriction data.

Reference: [Upholt, 1977]

Nei Li Restriction Distance

The Nei Li Restriction Distance algorithm takes a Characters block as input and produces a Distances block as
output. It calculates distances for restriction data.

Reference: [Nei and Li, 1979]

Base Freq Distance

The Base Freq Distance algorithm takes a Characters block as input and produces a Distances block as output.
It calculates distances from differences in the base composition.

Binary To Splits

The Binary To Splits algorithm takes a Characters block as input and produces a Splits block as output. It
converts binary characters directly into splits. The algorithm has the following options:

MinSplitWeight = <Double> - minimum split weight threshold

HighDimensionFilter = <Boolean> - activate high-dimensional filter to avoid exponential graph size

AddAllTrivial = <Boolean> - ensure all trival splits are present

Reference: [Huson et al., 2012]

48

DNA To Splits

The DNA To Splits algorithm takes a Characters block as input and produces a Splits block as output. It converts
DNA characters directly into splits. The algorithm has the following options:

Method = {MajorityState | RYAlphabet} - use either majority-state-vs-others or RY alphabet

MinSplitWeight = <Double> - minimum split weight threshold

HighDimensionFilter = <Boolean> - activate high-dimensional filter to avoid exponential graph size

Reference: [Huson et al., 2012]

Median Joining

The Median Joining algorithm takes a Characters block as input and produces a Network block as output. It
computes a haplotype network using the median-joining method. The algorithm has the following options:

Epsilon = <Integer> - balances accuracy (smaller value) and efficiency (larger value)

Reference: [Bandelt et al., 1999]

Parsimony Splits

The Parsimony Splits algorithm takes a Characters block as input and produces a Splits block as output. It
computes weakly-compatible splits directly from DNA characters.

Reference: [Bandelt and Dress, 1992]

Characters Filter

The Characters Filter algorithm takes a Characters block as input and produces a Characters block as output. It
filter characters. The algorithm has the following options:

ExcludeGapSites = <Boolean> - exclude all sites that contain a gap

ExcludeParsimonyUninformativeSites = <Boolean> - exclude all sites that are parsimony uninformative

ExcludeConstantSites = <Boolean> - exclude all sites that are constant

ExcludeFirstCodonPosition = <Boolean> - exclude first and then every third site

ExcludeSecondCodonPosition = <Boolean> - exclude second and then every third site

ExcludeThirdCodonPosition = <Boolean> - exclude third and then every third site

External Program

The External Program algorithm takes a Characters block as input and produces a Trees block as output. It runs
an external program. The algorithm has the following options:

Name = <String> - specify a name for this calculation

ProgramCall = <String> - specification of external program: replace ’path-to-program’ by path to program and

use ’%i’ and ’%o’ as place - holders for the program’s input and output files

CharactersFormat = {Phylip | Nexus | FastA} - specify the format to write out the current data in

49

Estimate Invariable Sites

The Estimate Invariable Sites algorithm takes a Characters block as input and produces a Report block as output.
It estimates the proportion of invariant sites using capture-recapture.

Reference: [Steel et al., 2000]

Phi Test

The Phi Test algorithm takes a Characters block as input and produces a Report block as output. It performs a
statistical test for detecting the presence of recombination.

Reference: [Bruen et al., 2006]

Tajima D

The Tajima D algorithm takes a Characters block as input and produces a Report block as output. It performs
Tajima’s D test to determine whether a DNA sequence is evolving neutrally. The algorithm has the following
options:

ExcludeGapSites = <Boolean> - exclude gapped sites from calculation.

Reference: [Tajima, 1989]

C.2 Algorithms on a Distances Block

Neighbor Joining

The Neighbor Joining algorithm takes a Distances block as input and produces a Trees block as output. It
computes an unrooted phylogenetic tree using the neighbor-joining method.

Reference: [Saitou and Nei, 1987]

Bio NJ

The Bio NJ algorithm takes a Distances block as input and produces a Trees block as output. It computes an
unrooted phylogenetic tree using the Bio-NJ method.

Reference: [Gascuel, 1997]

UPGMA

The UPGMA algorithm takes a Distances block as input and produces a Trees block as output. It computes a
rooted phylogenetic tree using the UPGMA method.

Reference: [Sokal and Michener, 1958]

50

Neighbor Net

The Neighbor Net algorithm takes a Distances block as input and produces a Splits block as output. It computes
a set of cyclic splits using the neighbor-net method. The algorithm has the following options:

InferenceAlgorithm = {GradientProjection | ActiveSet | APGD | SplitsTree4} - the inference algorithm to be used

References: [Bryant and Moulton, 2004, Bryant and Huson, 2023]

Split Decomposition

The Split Decomposition algorithm takes a Distances block as input and produces a Splits block as output. It
computes a set of weakly-compatible splits using the split-decomposition method.

Reference: [Bandelt and Dress, 1992]

Buneman Tree

The Buneman Tree algorithm takes a Distances block as input and produces a Splits block as output. It computes
a set of compatible splits using the Buneman tree method.

Reference: [Bandelt and Dress, 1992]

Min Spanning Network

The Min Spanning Network algorithm takes a Distances block as input and produces a Network block as output.
It computes a minimum spanning network. The algorithm has the following options:

Epsilon = <Double> - weighted genetic distance measure. Low: MedianJoining, High: full median network

MinSpanningTree = <Boolean> - calculate minimum spanning tree

Reference: [Excoffier and Smouse, 1994]

Min Spanning Tree

The Min Spanning Tree algorithm takes a Distances block as input and produces a Trees block as output. It
computes a minimum spanning tree.

Reference: [Excoffier and Smouse, 1994]

PCOA

The PCOA algorithm takes a Distances block as input and produces a Network block as output. It performs
principal coordinates analysis. The algorithm has the following options:

FirstCoordinate = <Integer> - choose principal component for the x Axis

SecondCoordinate = <Integer> - choose principal component for the y Axis

Reference: [Gower, 1966]

51

Delta Score

The Delta Score algorithm takes a Distances block as input and produces a Report block as output. It calculates
the delta score.

Reference: [Holland et al., 2002]

C.3 Algorithms on a Splits Block

Bootstrap Splits

The Bootstrap Splits algorithm takes a Splits block as input and produces a Splits block as output. It performs
bootstrapping on splits. The algorithm has the following options:

Replicates = <Integer> - number of bootstrap replicates

MinPercent = <Double> - minimum percentage support for a split to be included

ShowAllSplits = <Boolean> - show all bootstrap splits, not just the original splits

RandomSeed = <Integer> - if non-zero, is used as seed for random number generator

HighDimensionFilter = <Boolean> - heuristically remove splits causing high-dimensional network

Reference: [Felsenstein, 1985]

Greedy Tree

The Greedy Tree algorithm takes a Splits block as input and produces a Trees block as output. It produces a
phylogenetic tree based on greedily selecting a compatible set of splits.

Reference: [Huson et al., 2012]

Dimension Filter

The Dimension Filter algorithm takes a Splits block as input and produces a Splits block as output. It heuristically
remove splits that lead to high-dimensional boxes in a split network. The algorithm has the following options:

MaxDimension = <Integer> - heuristically remove splits that create configurations of a higher dimension than this threshold

Show Splits

The Show Splits algorithm takes a Splits block as input and produces a View block as output. It provides
interactive visualizations of split networks. The algorithm has the following options:

View = {SplitNetwork} - the type of splits viewer to use

Splits Filter

The Splits Filter algorithm takes a Splits block as input and produces a Splits block as output. It filter splits.
The algorithm has the following options:

WeightThreshold = <Float> - set minimum split weight threshold

52

ConfidenceThreshold = <Float> - set the minimum split confidence threshold

MaximumDimension = <Integer> - set maximum dimension threshold (necessary to avoid computational overload)

FilterAlgorithm = {None | GreedyCompatible | GreedyCircular | GreedyWeaklyCompatible | BlobTree} - set the filter
algorithm

RecomputeCycle = <Boolean> - recompute circular ordering

Weights Slider

The Weights Slider algorithm takes a Splits block as input and produces a Splits block as output. It allows one
to interactively filter splits by their weight. The algorithm has the following options:

WeightThreshold = <Double> - set minimum split weight threshold

Incompatibility Score

The Incompatibility Score algorithm takes a Splits block as input and produces a Report block as output. It
calculates an incompatibility score on splits.

Phylogenetic Diversity

The Phylogenetic Diversity algorithm takes a Splits block as input and produces a Report block as output. It
calculates the phylogenetic diversity for selected taxa.

Reference: [Volkmann et al., 2014]

Shapley Values

The Shapley Values algorithm takes a Splits block as input and produces a Report block as output. It calculates
Shapley values on splits.

Reference: [Volkmann et al., 2014]

C.4 Algorithms on a Trees Block

Autumn Algorithm

The Autumn Algorithm algorithm takes a Trees block as input and produces a Trees block as output. It computes
all minimum hybridization networks using the Autumn algorithm The algorithm has the following options:

FirstTree = <Integer> - index of the first tree

SecondTree = <Integer> - index of the second tree

OnlyOneNetwork = <Boolean> - report only one network

RerootToMinimize = <Boolean> - reroot input trees to minimize hybridization number

Reference: [Huson and Linz, 2018]

53

Phylo Fusion

The Phylo Fusion algorithm takes a Trees block as input and produces a Trees block as output. It combines
multiple rooted phylogenetic trees into a rooted network. The algorithm has the following options:

OnlyOneNetwork = <Boolean> - report only one network

MutualRefinement = <Boolean> - mutually refine input trees

NormalizeEdgeWeights = <Boolean> - normalize input edge weights

SearchHeuristic = {Thorough | Medium | Fast} - fast, Medium, or Thorough search

GroupNonSeparated = <Boolean> - improve performance by grouping taxa that are not separated by a non-trivial edge

CladeReduction = <Boolean> - improve performance using clade reduction

References: [Zhang et al., 2023, 2024]

Average Consensus

The Average Consensus algorithm takes a Trees block as input and produces a Splits block as output. It calculates
average consensus tree.

Reference: [Lapointe and Cucumel, 1997]

Blob Tree

The Blob Tree algorithm takes a Trees block as input and produces a Trees block as output. It extract the blob
tree from a rooted network The algorithm has the following options:

SeparateBlobs = <Boolean> - for any blob that shares its top node with some other blob, insert an edge above it to keep blobs

separate

Reference: [Huson et al., 2012]

Bootstrap Tree Splits

The Bootstrap Tree Splits algorithm takes a Trees block as input and produces a Splits block as output. It
performs bootstrapping on trees. The algorithm has the following options:

Replicates = <Integer> - number of bootstrap replicates

MinPercent = <Double> - minimum percentage support for a split to be included

ShowAllSplits = <Boolean> - show all bootstrap splits, not just the original splits

RandomSeed = <Integer> - if non-zero, is used as seed for random number generator

HighDimensionFilter = <Boolean> - heuristically remove splits causing high-dimensional network

Reference: [Felsenstein, 1985]

Bootstrap Tree

The Bootstrap Tree algorithm takes a Trees block as input and produces a Trees block as output. It performs
bootstrapping on trees. The algorithm has the following options:

Replicates = <Integer> - number of bootstrap replicates

54

TransferBootstrap = <Boolean> - use transform bootstrapping (TBE), less susceptible to rouge taxa

MinPercent = <Double> - minimum percentage support for a branch to be included

RandomSeed = <Integer> - if non-zero, is used as seed for random number generator

Reference: [Felsenstein, 1985]

Cluster Network

The Cluster Network algorithm takes a Trees block as input and produces a Trees block as output. It computes
the cluster network that contains all input trees (in the hardwired sense). The algorithm has the following options:

EdgeWeights = {Mean | Count | Sum | Uniform} - compute edge weights

ThresholdPercent = <Double> - minimum percentage of trees that a cluster must appear in

Reference: [Huson and Rupp, 2008]

Consensus Tree

The Consensus Tree algorithm takes a Trees block as input and produces a Trees block as output. It provides
several methods for computing a consensus tree. The algorithm has the following options:

Consensus = {Majority | Greedy | Strict} - consensus method to use

Reference: [Bryant, 2001]

Consensus Network

The Consensus Network algorithm takes a Trees block as input and produces a Splits block as output. It computes
the consensus network. The algorithm has the following options:

EdgeWeights = {Mean | TreeSizeWeightedMean | Median | Count | Sum | Uniform | TreeNormalizedSum} - how to calcu-
late edge weights in resulting network

ThresholdPercent = <Double> - threshold for percent of input trees that split has to occur in for it to appear in the output

HighDimensionFilter = <Boolean> - heuristically remove splits causing high-dimensional consensus network

Reference: [Holland et al., 2004]

Consensus Outline

The Consensus Outline algorithm takes a Trees block as input and produces a Splits block as output. It computes
the consensus outline. The algorithm has the following options:

EdgeWeights = {Mean | TreeSizeWeightedMean | Median | Count | Sum | Uniform | TreeNormalizedSum} - how to calcu-
late edge weights in resulting network

ThresholdPercent = <Double> - threshold for percent of input trees that split has to occur in for it to appear in the output

Reference: [Huson and Cetinkaya, 2023]

55

Consensus Splits

The Consensus Splits algorithm takes a Trees block as input and produces a Splits block as output. It provides
several consensus methods. The algorithm has the following options:

Consensus = {Strict | Majority | GreedyCompatible | ConsensusOutline | GreedyWeaklyCompatible | ConsensusNetwork}

- consensus method

EdgeWeights = {Mean | TreeSizeWeightedMean | Median | Count | Sum | Uniform | TreeNormalizedSum} - how to calcu-
late edge weights in resulting network

ThresholdPercent = <Double> - threshold for percent of input trees that split has to occur in for it to appear in the output

HighDimensionFilter = <Boolean> - heuristically remove splits causing high-dimensional consensus network

Reference: [Huson et al., 2012]

Filtered Super Network

The Filtered Super Network algorithm takes a Trees block as input and produces a Splits block as output. It
computes a super network using the Z-closure method. The algorithm has the following options:

MinNumberTrees = <Integer> - set the min number trees

MaxDistortionScore = <Integer> - set the max distortion score

UseTotalScore = <Boolean> - set the use total score

Reference: [Whitfield et al., 2008]

LSA Tree

The LSA Tree algorithm takes a Trees block as input and produces a Trees block as output. It extract the LSA
tree from a rooted network.

Reference: [Huson et al., 2012]

Normalize Rooted Networks

The Normalize Rooted Networks algorithm takes a Trees block as input and produces a Trees block as output. It
the Normalize Rooted Networks algorithm

Reference: [Francis et al., 2021]

Rooted Consensus Tree

The Rooted Consensus Tree algorithm takes a Trees block as input and produces a Trees block as output. It
provides several methods for computing a rooted consensus tree. The algorithm has the following options:

Consensus = {Majority | Strict | Greedy} - consensus method to use

56

Reroot Or Reorder Trees

The Reroot Or Reorder Trees algorithm takes a Trees block as input and produces a Trees block as output. It
reroot or reorder all trees. The algorithm has the following options:

RootBy = {Off | MidPoint | OutGroup} - determine how to reroot

RearrangeBy = {Off | RotateChildren | RotateSubTrees | ReverseChildren | ReverseSubTrees} - determine how to rear-
range

Reorder = {Off | ByTaxa | Lexicographically | ReverseOrder | LadderizedUp | LadderizedDown | LadderizedRandom | Stabilize}

- determine how to reorder

Rescale = <Boolean> - rescale each tree to total length of 100

Show Trees

The Show Trees algorithm takes a Trees block as input and produces a View block as output. It provides several
types of interactive visualizations of trees. The algorithm has the following options:

View = {TreeView | TreePages | Tanglegram | DensiTree} - the type of viewer to use

Super Network

The Super Network algorithm takes a Trees block as input and produces a Splits block as output. It computes a
super network using the Z-closure method. The algorithm has the following options:

EdgeWeights = {AverageRelative | Mean | TreeSizeWeightedMean | Sum | Min | None} - determine how to calculate edge
weights in resulting network

SuperTree = <Boolean> - enforce the strong induction property, which results in a super tree

NumberOfRuns = <Integer> - number of runs using random permutations of the input splits

ApplyRefineHeuristic = <Boolean> - apply a simple refinement heuristic

Seed = <Integer> - set seed used for random permutations

HighDimensionFilter = <Boolean> - heuristically remove splits causing high-dimensional network

Reference: [Huson et al., 2004]

Trees Filter

The Trees Filter algorithm takes a Trees block as input and produces a Trees block as output. It filter trees.

Trees Filter More

The Trees Filter More algorithm takes a Trees block as input and produces a Trees block as output. It filter trees.
The algorithm has the following options:

RequireAllTaxa = <Boolean> - keep only trees that have the full set of taxa

MinNumberOfTaxa = <Integer> - keep only trees that have at least this number of taxa

MinTotalTreeLength = <Double> - keep only trees that have at least this total length

57

Trees Edges Filter

The Trees Edges Filter algorithm takes a Trees block as input and produces a Trees block as output. It filter
edges in trees. The algorithm has the following options:

MinConfidence = <Double> - keep only edges that have this minimum confidence value

MinEdgeLength = <Double> - keep only edges that have this minimum length

UniformEdgeLengths = <Boolean> - change all edge weights to 1

Rescale = <Boolean> - rescale each tree to total length of 100

Tree Selector

The Tree Selector algorithm takes a Trees block as input and produces a Trees block as output. It select a tree
to use. The algorithm has the following options:

Which = <Integer> - which tree to use

Tree Selector Splits

The Tree Selector Splits algorithm takes a Trees block as input and produces a Splits block as output. It selects
a single tree and extracts its splits. The algorithm has the following options:

Which = <Integer>

Unique Topologies

The Unique Topologies algorithm takes a Trees block as input and produces a Trees block as output. It filters trees
or rooted networks returning all unique topologies (using hardwired clusters). The algorithm has the following
options:

Unrooted = <Boolean> - ignore location of root

Confidence Network

The Confidence Network algorithm takes a Trees block as input and produces a Splits block as output. It computes
a credibility network using Beran’s algorithm. The algorithm has the following options:

Level = <Double> - set the level (between 0 and 1)

HighDimensionFilter = <Boolean> - heuristically remove splits causing high-dimensional consensus network

Reference: [Huson and Bryant, 2006]

Phylogenetic Diversity

The Phylogenetic Diversity algorithm takes a Trees block as input and produces a Report block as output. It
calculates the phylogenetic diversity for selected taxa. The algorithm has the following options:

Rooted = <Boolean> - interpret trees as rooted?

ApplyTo = {OneTree | AllTrees} - determine whether to apply to one or all trees

WhichTree = <Integer> - the index of the tree that the method will be applied to

58

Reference: [Faith, 1992]

Robinson Foulds Distances

The Robinson Foulds Distances algorithm takes a Trees block as input and produces a Report block as output.
It calculates the Robinson-Foulds distance between each pair of trees The algorithm has the following options:

Normalize = <Boolean> - normalized distances

Reference: [?]

Tree Diversity Index

The Tree Diversity Index algorithm takes a Trees block as input and produces a Report block as output. It
calculates the fair-proportion and equal-splits values on trees. The algorithm has the following options:

Method = {FairProportions | EqualSplits} - choose the type of index calculation

ApplyTo = {OneTree | AllTrees} - determine whether to apply to one or all trees

WhichTree = <Integer> - the index of the tree that the method will be applied to

References: [Redding, 2003, Redding and Mooers, 2006]

Unrooted Shapley Values

The Unrooted Shapley Values algorithm takes a Trees block as input and produces a Report block as output. It
calculates unrooted Shapley values on trees. The algorithm has the following options:

ApplyTo = {OneTree | AllTrees} - determine whether to apply to one or all trees

WhichTree = <Integer> - the index of the tree that the method will be applied to

Reference: [Haake et al., 2008]

Average Distances

The Average Distances algorithm takes a Trees block as input and produces a Distances block as output. It
calculates the average distances between taxa over a set of trees.

Reference: [Lapointe and Cucumel, 1997]

Enumerate Contained Trees

The Enumerate Contained Trees algorithm takes a Trees block as input and produces a Trees block as output. It
enumerates all contained trees. The algorithm has the following options:

RemoveDuplicates = <Boolean> - suppress duplicate trees in output

59

Loose And Lacy

The Loose And Lacy algorithm takes a Trees block as input and produces a Trees block as output. It computes
the ‘loose’ and ‘lacy’ species for a given tree and taxon trait. The algorithm has the following options:

SpeciesDefinition = {Loose | Lacy | Both} - species definition to use

TraitNumber = <Integer> - number of specific trait to use

UseAllTraits = <Boolean> - use all traits

Reference: [Hoppe et al., 2019]

List One RSPR Trees

The List One RSPR Trees algorithm takes a Trees block as input and produces a Report block as output. It
determines which trees are exactly on rSPR away from each other. The algorithm has the following options:

ApplyTo = {OneTree | AllTrees} - determine whether to apply to one or all trees

WhichTree = <Integer> - the index of the tree that the method will be applied to

C.5 Algorithms on a Network Block

Show Network

The Show Network algorithm takes a Network block as input and produces a View block as output. It provides
interactive visualizations of networks. The algorithm has the following options:

View = {Network | Text} - the type of network viewer to use

60

Appendix D

Supported import and export formats

The program support several widely-used import and export formats.

D.1 Supported import formats

D.1.1 Importers for a characters block

Can import characters data in the following formats: FastA, MSF, Stockholm, Nexus, Phylip.

D.1.2 Importers for a distances block

Can import distances data in the following formats: Nexus, Phylip, CSV.

D.1.3 Importers for a trees block

Can import trees data in the following formats: Newick, Nexml, Nexus.

D.1.4 Importers for a splits block

Can import splits data in the following formats: Newick, Nexus.

D.1.5 Importers for a network block

Can import network data in the following formats: Nexus.

D.1.6 Importers for a genomes block

Can import genomes data in the following formats: Nexus.

61

D.2 Supported output formats

D.2.1 Exporters for a taxa block

Can export taxa data in the following formats: Nexus.

D.2.2 Exporters for a characters block

Can export characters data in the following formats: Clustal, FastA, Nexus, Phylip.

D.2.3 Exporters for a distances block

Can export distances data in the following formats: Nexus, Phylip.

D.2.4 Exporters for a trees block

Can export trees data in the following formats: NeXML, Newick, Nexus.

D.2.5 Exporters for a splits block

Can export splits data in the following formats: FastA, Newick, Nexus.

D.2.6 Exporters for a network block

Can export network data in the following formats: Nexus.

D.2.7 Exporters for a genomes block

Can export genomes data in the following formats: Nexus.

D.2.8 Exporters for a view block

Can export view data in the following formats: GML, Nexus.

62

D.3 Taxon display labels import

Taxon display labels can be imported from a text file. Each line of the file must contain two tab-separated entries.
The first entry is the taxon name, as used in the input data, and the second entry is the corresponding display
label, which may contain HTML formatting.

Here is an example. The first label has font size 24 and text color blue. The second label is shown in bold. The
remaining four labels have a yellow background.

Co90 -125 <size "24"><c blue >Co90 -125

s428 s428

s421 <bg yellow >s421

s433 <bg yellow >s433

s434 <bg yellow >s434

s498 <bg yellow >s498

D.4 Traits import

Traits can be imported from a text file. The first line of the file must define the names of the traits. The line
must start with the keyword Traits and then must contain a list of the names of the different traits, separated
by tabs

Then there must be one line for each taxon. The first entry must be the taxon name and this must be followed
by one value for each of the listed traits, separated by tabs.

Here is an example defining five traits, Europe to America, for seven taxa seq_1 to seq_7. In this case, the
trait values are counts.

The second line starting with the key word Coordinates is optional. When present, it provides the latitude and
longitude associated with each trait.

Traits Europe Asia Africa Australia America

Coordinates 53 ,16.75 43.68 ,87.33 5.4 ,26.5 -25.61 ,134.35 0,-76

seq_1 0 0 0 3 3

seq_2 10 5 0 6 0

seq_3 0 0 0 3 5

seq_4 0 0 0 4 2

seq_5 4 0 10 0 0

seq_6 0 0 0 7 3

seq_7 0 0 5 0 0

The program also supports a second way of specifying taxon-trait associations. After specifying the first (one or
two) lines, the taxon-trait counts can also be specified by listing a taxon, a trait and then the desired count, like
this:

Traits Europe Asia Africa Australia America

Coordinates 53 ,16.75 43.68 ,87.33 5.4 ,26.5 -25.61 ,134.35 0,-76

seq_1 Australia 3

seq_1 America 3

seq_2 Europe 10

seq_2 Asia 5

seq_2 Australia 6

...

63

64

Appendix E

Workflow

SplitsTree is designed around the concept of a workflow. This is a provenance graph in which nodes explicitly
represent data blocks and algorithms.

E.1 Input and working nodes

The graph is displayed the workflow tab (see Section 1.13) and is also presented in the sidebar (see Section 1.18).
While the casual user will use menu items to set up and change the graph (without being aware of the graph),
a user more familiar with the program will use controls in the workflow tab and sidebar to explicitly add, delete,
duplicate or modify nodes and edges in the workflow graph.

Each main window contains one workflow and the workflow represents one input dataset, all applied algorithms
and derived data.

In more detail, the graph is a tree with two root nodes (see Fig. E.1).

The first root node represents the set of input taxa. The number of input taxa is fixed and each taxon has a
unique name (a label that does not contain special characters such as a single or double quote and must not be
a number.) In addition, each taxon can have a display label, which may contain certain HTML commands, that
is used to draw the label associated with the taxon.

The second root node represents the input data. This may be a set of characters (or sequence alignment), a
distance matrix, a collection of trees (or rooted networks), or a set of splits.

The input-taxa node has one child, the taxa filter node. This can be used to remove some of the input taxa. This
node has one child that contains the set of working taxa. This node represents the set of taxa that are actually
used in all computations.

The input data node has one child that contains the working data. The data associated with this node is copied
from the input data node, removing any taxa that have been deactivated using the taxa filter node.

All calculations undertaken in the program are based on the set of working taxa and the working data.

If the input data is character data (or a multiple sequence alignment), then the input data is displayed in the
alignment tab (see Section 1.5) and controls associated with the tab allow the user to add or remove taxa in the
same manner as when using the taxa filter.

The taxa filter also allows the user to edit the display labels associated with taxa.

65

Figure E.1: The workflow is a directed tree with two root nodes, the first representing the set of input taxa and
the second representing the input data. The taxa filter node can be used to remove input taxa and thus produces
the working taxa node. Filtering taxa also has the effect of removing the corresponding data from the input data
node and gives rise to the working data node. Subsequent algorithms are run on the data represented by the
working taxa and working data nodes.

E.2 Data and algorithm nodes

The workflow contains two main types of nodes, algorithm nodes and data nodes. The workflow is a bipartite
graph: data nodes only have algorithm nodes as children and vice versa (see Fig. E.2).

In the Figure (see Fig. E.1) it looks like the input data node and working data node are directly connected to
each other. However, actually there is a special algorithm node between the two that facilitates the filtering of
data when the taxa filter is used. As this node is only used internally, it is not displayed in the workflow tab or
sidebar.

Each algorithm node computes data that is based on to a data node, while each data node is provided with the
set of working taxa and one parental data node to work with. (Some algorithms, such as those that perform
bootstrapping, additionally access other ancestral nodes to perform their calculations.)

The final nodes of the workflow (leaves) are always data nodes and each is of one of two special kinds. First,
there are view nodes that represent the graphical visualization of trees or networks. Second, there are reporter
nodes that are used to present the textual output of a calculation, such as the computation of Tajima’s D.

An algorithm node can represent one of several algorithms, depending on the type of input data and output data.
For example, there are three algorithms that take as input a distance matrix and produce, as output, a set of
splits, namely neighbor-net, split decomposition and the Buneman tree algorithm. In the Figure (see Fig. E.3) we
show such an algorithm node and the controls associated with it.

A data node usually represents a block of data, which can be either characters (aligned sequences), a distance
matrix, a set of splits, a collection of trees (and/or rooted networks) or a haplotype network (see Fig. E.4). A
view node is a data node that corresponds to a viewer for trees or networks.

66

Figure E.2: Here we show the workflow that shows a split network computed from characters data. The workflow
contains chains of alternating algorithm and data nodes. The characters data (working data node) is followed
by the p-distance calculation, giving rise to a data node containing distances. The distances are provided to the
neighbor-net algorithm, giving rise to a set of splits. The splits are passed to the show splits node, which computes
the visualization, which is represented by the splits view node.

67

Figure E.3: The highlighted algorithm node has two buttons, an edit button that opens the corresponding
algorithm tab, and a run button, that runs the algorithm and all downstream calculations. In addition, there
is status icon that indicates whether the algorithm has been successfully run (green tick), is waiting to be run
(yellow clock) or has failed or has been canceled (red cross).

68

Figure E.4: A data node has a drop-down menu that allows one to attach a new algorithm to the node, thus
starting a new chain of nodes. The show button opens a tab that provides a textual representation of the data.
The status icon whether the data is up-to-date (green tick), is waiting to be updated (yellow clock) or is missing
due to a failed or canceled algorithm (red cross).

E.3 Exporting the workflow

When saving a document, the workflow, including all input data and computed data, are saved to a file to be
opened later. Such a full file has file suffix .stree6.

In addition, using the File->Export->Workflow... menu item, the user can save just the workflow graph,
without the current data, to a file. Such a workflow file has file suffix .wflow6.

A saved workflow can be reopened in SplitsTree and data can then be loaded using the File->Replace Data...

menu item.

E.4 Running a workflow on multiple datasets

To run an analysis on multiple datasets, the SplitsTree packages comes with a commandline tool called run-
workflow , located in the tools directory. The basic idea is as follows. First, use SplitsTree to interactively set
up the desired analysis. Then save export the workflow to a file(see Section E.3). Then use the run-workflow

program to apply the workflow to multiple datasets.

The program is configured using a number of commandline options, to set the workflow file, to set the input data
files, to set the output file or files, and to determine what should be written to the output.

Here is a synopsis of the program:

SYNOPSIS

RunWorkflow [options]

DESCRIPTION

69

Runs a SplitsTree6 workflow on input data

OPTIONS

Input Output:

-w, --workflow [string] File containing SplitsTree6 workflow. Mandatory option.

-i, --input [string(s)] File(s) containing input data (or directory). Mandatory option.

-f, --format [string] Input format. Default: Unknown. Legal values: ’Unknown’ ’FastA’ ’MSF’ ’Newick’

’Nexml’ ’Nexus’ ’Phylip’ ’Stockholm’

-o, --output [string(s)] Output file(s) (or directory or stdout). Default value(s): ’stdout’

-n, --node [string] Title of node to be exported (if none given, will save whole file).

-e, --exporter [string] Name of exporter to use. Legal values: ’Clustal’ ’FastA’ ’GML’ ’NeXML’ ’Newick’

’Nexus’ ’Phylip’ ’PlainText’ ’NexusWithTaxa’

Other:

-x, --inputExt [string] File extension for input files (when providing directory for input).

-r, --recursive Recursively visit all sub-directories. Default: false.

-t, --time [string] Maximum wall-clock time to run (e.g. 100s, 2m, 3h or 4d). Default: unlimited.

-p, --propertiesFile [string] Properties file.

-s, --silent Silent mode (hide all stderr output). Default: false.

-v, --verbose Echo commandline options and be verbose. Default: false.

-h, --help Show program usage and quit.

Here is a summary of the most important options:

• Use the -w option to specify the workflow file.

• Use the -i option to list the input files or a directory that that contains the input files.

• Use the -f option to specify the file format of the input files.

• Optionally, use the -x option to specify the file suffixes of the input files, if a specified directories contains
some files that should not be used.

• Optionally, use the -r option to recursively visit all directories contained in the specified input directory.

• Use the -o option to specify the output file or files. If you specify one directory, then one output file per
input file will be created and written to that directory. If you specify one file, then all output is written to
that file. You can also specify one output file per input file. Use the keyword stdout to have all output
written to the console. If output files end on .gz then they will be written in gzip format.

• Use the -n option to specify a specific data node to be saved to output. For example, if your analysis
generates a trees block called Trees, then you can specify -n Trees to output the trees. If this option is
not specified, then the whole workflow is output containing all input and computed data.

• Use the -e option to specify which exporter (and thus format) to use when generating output. This option
is ignored if the -n is not specified.

70

Appendix F

Styling labels

In SplitsTree, each taxon is represented by a unique label. These labels are specified in the input taxa block.
In addition to these labels, the taxon block may also contain a set of “display labels”, one for each taxon. If
provided, the display labels are used in drawings of trees and networks. Display labels can be styled using a set
HTML tags. There are several ways to do this:

• Use the side panel (on the right) to choose a font, font size, text color, background color or mark. Each of
these interactive choices produce corresponding HTML tags in the display labels.

• Right-clicking on a taxon label displayed in a tree or network will open an input dialog for the display label.
The dialog allows the user to edit the display label any changes to the label are immediately shown in a
preview pane.

• In the TaxaFilter tab, there is an entry for each taxon, which can be edited.

• Display labels can be imported from a file (and exported to a file for reuse). Each line of the file must
contain a key and a value separated by a tab. The key is the unique taxon name and the value is the desired
display label.

Here is a list of all supported HTML tags, most are standard HTML, a few are specific to SplitsTree:

• <i>text</i> - display enclosed text in italics,

• text - display enclosed text in bold,

• ^{text} - display enclosed text as super-script,

• _{text} - display enclosed text as super-script,

• <u>text</u> - display enclosed text as underlined,

• <a>text - display enclosed text using strike-through,

•
 - add a new-line,

• text - display enclosed text using the named font,

• <size "value">text</size> - display enclosed text using the given font size value,

• <c "value">text</c> - display enclosed text using the given color value,

• <bg "value">background-color</bg> - display enclosed text using the given background color value,

• <mark shape="value" width="value" height="value" fill="color" stroke="color"> - adds a
mark to text, using the provided shape, width, height, fill and stroke colors, and

71

Figure F.1: Here, for all taxa (except for A. Andrenof), the display label includes a Wikipedia image of the
represented species of bees. By right-clicking on the A. Koschev label, the display-label editor was opened for
this label.

• - adds an image using the provided
URL and width and/or height.

HTML numerical codes can be used to specify characters.

In the Figure (see Fig. F.1) a display label has been set for each taxon (except for A. Andrenof). Using HTML, the
display labels include a Wikipedia image of the represented species of bees. In addition, the display label editor
is shown open for A. Koschev. The display label contains HTML tags for italics and a tag to start a superscript.
The HTML entity † is used to display a dagger.

72

Acknowledgments

We thank Daria Evseeva for working on the code with us. We thank Celine Scornavacca for her implementation
of the tanglegram layout. This program uses the JAMA library in the neighbor-net algorithm.

73

74

Bibliography

C. Bagci, D. Bryant, B. Cetinkaya, and DH Huson. Microbial phylogenetic context using phylogenetic outlines.
Genome Biology and Evolution, 13(9), 2021.

H-J Bandelt. Combination of data in phylogenetic analysis. In Systematics and Evolution of the Ranunculiflorae,
pages 355–361. Springer, 1995.

HJ Bandelt and AWM Dress. A canonical decomposition theory for metrics on a finite set. Advances in Mathe-
matics, 92:47–105, 1992.

HJ Bandelt, P. Forster, and A. Rhl. Median-joining networks for inferring intraspecific phylogenies. Molecular
Biology and Evolution, 16:37–48, 1999.

K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval graphs, and graph planarity
using pq-tree algorithms. Journal of Computer and System Sciences, 13(3):335–379, 1976.

RR Bouckaert. Densitree: making sense of sets of phylogenetic trees. Bioinformatics, 26(1):1372–1373, 2010.

TC Bruen, H. Philippe, and D. Bryant. A simple and robust statistical test for detecting the presence of recom-
bination. Genetics, 173:2665–2681, 2006.

D. Bryant. A classification of consensus methods for phylogenetics. In Bioconsensus, 2001.

D. Bryant and D. H. Huson. NeighborNet–improved algorithms and implementation. Frontiers in Bioinformatics,
2023.

D. Bryant and V. Moulton. Neighbor-net: An agglomerative method for the construction of phylogenetic networks.
Molecular Biology and Evolution, 21(2):255–265, 2004.

C. Scornavacca D. H. Huson. Dendroscope 3: An interactive tool for rooted phylogenetic trees and networks.
Systematic Biology, 61(6):1061–1067, 2012.

LR Dice. Measures of the amount of ecologic association between species. Ecology, 26(3):297–302, 1945.

Andreas W M Dress and Daniel H Huson. Constructing splits graphs. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 1(3):109–115, 2004.

L. Excoffier and PE Smouse. Using allele frequencies and geographic subdivision to reconstruct gene trees within
a species: molecular variance parsimony. Genetics, 136(1):343–359, 1994.

DP Faith. Conservation evaluation and phylogenetic diversity. Biological Conservation, 61:1–10, 1992.

J. Felsenstein. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular
Evolution, 17(6):368–376, 1981.

J. Felsenstein. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4):783–791,
1985.

J. Felsenstein and GA Churchill. A hidden markov model approach to variation among sites in rate of evolution,
and the branching order in hominoidea. Molecular Biology and Evolution, 13(1):93–104, 1996.

75

A. Francis, D.H. Huson, and M.A. Steel. Normalising phylogenetic networks. Molecular Phylogenetics and
Evolution, 163, 2021.

O. Gascuel. BIONJ: an improved version of the nj algorithm based on a simple model of sequence data. Molecular
Biology and Evolution, 14:685–695, 1997.

JC Gower. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika,
53(3-4):325–338, 1966.

M. Gruenstaeudl. Why the monophyly of nymphaeaceae currently remains indeterminate: an assessment based
on gene-wise plastid phylogenomics. Plant Systematics and Evolution, 305:827–836, 2019.

CJ Haake, A. Kashiwada, and FE Su. The Shapley value of phylogenetic trees. J Math Biol, 56:479–497, 2008.

RW Hamming. Error detecting and error correcting codes. Bell System Technical Journal, 29(2):147–160, 1950.

M. Hasegawa, H. Kishino, and T. Yano. Dating of human-ape splitting by a molecular clock of mitochondrial
DNA. Journal of Molecular Evolution, 22(2):160–174, 1985.

BR Holland, KT Huber, AWM Dress, and V. Moulton. Delta plots: A tool for analyzing phylogenetic distance
data. Molecular Biology and Evolution, 19(12):2051–2059, 2002.

BR Holland, KT Huber, and Vincent PJ Lockhart V. Moulton. Using Consensus Networks to Visualize Contra-
dictory Evidence for Species Phylogeny. Molecular Biology and Evolution, 21(7):1459–1461, 2004.

A. Hoppe, S. Tuerpitz, and MA Steel. Species notions that combine phylogenetic trees and phenotypic partitions.
Journal of Mathematical Biology, 78:117–134, 2019.

Daniel H. Huson and David Bryant. The splitstree app: interactive analysis and visualization using phylogenetic
trees and networks. Nature Methods, 2024. URL https://doi.org/10.1038/s41592-024-02406-3.

DH Huson and D Bryant. Application of phylogenetic networks in evolutionary studies. Molecular Biology and
Evolution, 23(2):254–267, 2006.

DH Huson and B Cetinkaya. Visualizing incompatibilities in phylogenetic trees using consensus outlines. Front.
Bioinform., 2023.

DH Huson and S. Linz. Autumn algorithmcomputation of hybridization networks for realistic phylogenetic trees.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 15:398–420, 2018.

DH Huson and R. Rupp. Summarizing multiple gene trees using cluster networks. In Algorithms in Bioinformatics.
WABI 2008, volume 5251 of Lecture Notes in Computer Science, 2008.

DH Huson and MA Steel. Phylogenetic trees based on gene content. Bioinformatics, 20(13):2044–2049, 2004.

DH Huson, T. Dezulian, T. Kloepper, and MA Steel. Phylogenetic super-networks from partial trees. IEEE/ACM
Transactions in Computational Biology and Bioinformatics, 1(4):151–158, 2004.

DH Huson, R. Rupp, and C. Scornavacca. Phylogenetic Networks. Cambridge, 2012.

P. Jaccard. tude comparative de la distribution florale dans une portion des alpes et des jura. Bulletin de la Socit
Vaudoise des Sciences Naturelles, 37:547–579, 1901.

TH Jukes and CR Cantor. Evolution of Protein Molecules, pages 21–132. Academic Press, New York, 1969.

M. Kimura. A simple method for estimating evolutionary rates of base substitutions through comparative studies
of nucleotide sequences. Journal of Molecular Evolution, 16(2):111–120, 1980.

FJ Lapointe and G. Cucumel. The average consensus procedure: Combination of weighted trees containing
identical or overlapping sets of taxa. Systematic Biology, 46(2):306–312, 1997.

J. W. Leigh and D. Bryant. PopART: Full-feature software for haplotype network construction. Methods in
Ecology and Evolution, 6(9):1110–1116, 2015.

76

https://doi.org/10.1038/s41592-024-02406-3

DR Maddison, DL Swofford, and WP Maddison. NEXUS: An extensible file format for systematic information.
Systematic Biology, 46(4):590–621, 1997.

M. Nei and WH Li. Mathematical model for studying genetic variation in terms of restriction endonucleases.
Proceedings of the National Academy of Sciences, 79(1):5269–5273, 1979.

BD Ondov, TJ Treangen, P. Melsted, AB Mallonee, NH Bergman, S. Koren, and AM Phillippy. Mash: fast
genome and metagenome distance estimation using minhash. Genome Biol, 17(132), 2016.

Donovan H. Parks, Maria Chuvochina, D. W. Waite, Christian Rinke, A. Skarshewski, P. A. Chaumeil, and Phil
Hugenholtz. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of
life. Nature Biotechnology, 36(10):996–1004, 2018.

D. Redding. Incorporating genetic distinctness and reserve occupancy into a conservation priorisation approach.
Master’s thesis, University of East Anglia, 2003.

DW Redding and AO Mooers. Incorporating evolutionary measures into conservation prioritization. Conservation
Biology, 20:1670–1678, 2006.

N. Saitou and M. Nei. The neighbor-joining method: a new method for reconstructing phylogenetic trees.
Molecular Biology and Evolution, 4:406–425, 1987.

C. Scornavacca, F. Zickmann, and DH Huson. Tanglegrams for rooted phylogenetic trees and networks. Bioin-
formatics, 27(13):i248–i256, 2011.

B. Snel, P. Bork, and M. A. Huynen. Genome phylogeny based on gene content. Nature Genetics, 21:108–110,
1997.

RR Sokal and CD Michener. A statistical method for evaluating systematic relationships. University of Kansas
Scientific Bulletin, 28:1409–1438, 1958.

MA Steel. Recovering a tree from the leaf colorations it generates under a markov model. Appl. Math. Lett., 7
(2):19–24, 1994.

MA Steel, DH Huson, and PJ Lockhart. Invariable site models and their use in phylogeny reconstruction. Sys.
Biol., 49(2):225–232, 2000.

DL Swofford, GJ Olsen, PJ Waddell, and DM Hillis. Phylogenetic inference, pages 407–514. Sinauer Associates,
Inc., 2nd edition, 1996.

F. Tajima. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123
(3):585–595, 1989.

S. Tavar. Some probabilistic and statistical problems in the analysis of dna sequences. Lectures on Mathematics
in the Life Sciences, 17:57–86, 1986.

WB Upholt. Estimation of dna sequence divergence from comparison of restriction endonuclease digests. Nucleic
Acids Res., 4(5):1257–1265, 1977.

L Volkmann, I Martyn, V Moulton, A Spillner, and AO Mooers. Prioritizing populations for conservation using
phylogenetic networks. PLoS ONE, 9(2):e88945, 2014.

JB Whitfield, SA Cameron, DH Huson, and MA Steel. Filtered z-closure supernetworks for extracting and
visualizing recurrent signal from incongruent gene trees. Systematic Biology, 57(6):939–947, 2008.

L. Zhang, N. Abhari, C. Colijn, and Y. Wu. A fast and scalable method for inferring phylogenetic networks from
trees by aligning lineage taxon strings. Genome Res, 2023.

L. Zhang, B. Cetinkaya, and DH Huson. Phylofusion- fast and easy fusion of rooted phylogenetic trees into a
network. in preparation, 2024.

77

Index

About. . . menu item, 35
algorithm nodes, 16, 64
Algorithms block, 40
Alignment tab, 8
Analysis menu, 34
Analyze Draft Genomes. . . menu item, 31
Autumn Algorithm algorithm, 51
Average Consensus algorithm, 52
Average Distances algorithm, 57

Base Freq Distance algorithm, 46
Binary To Splits algorithm, 46
Bio NJ algorithm, 48
BioNJ menu item, 33
Blob Tree algorithm, 52
Bootstrap Splits algorithm, 50
Bootstrap Splits Network menu item, 34
Bootstrap Tree algorithm, 52
Bootstrap Tree as Network menu item, 34
Bootstrap Tree menu item, 34
Bootstrap Tree Splits algorithm, 52
Brackets menu item, 32
Buneman Tree algorithm, 49
Buneman Tree menu item, 33

Characters block, 38
Characters data export, 60
Characters data import, 59
Characters Filter algorithm, 47
Check For Updates. . . menu item, 35
Close menu item, 31
Clustal format export, 60
Cluster Network algorithm, 53
Cluster Network menu item, 34
Compatible Sites menu item, 32
Compute Delta Score menu item, 34
Compute Tajima’s D menu item, 34
Confidence Network algorithm, 56
Consensus Network algorithm, 53
Consensus Network menu item, 34
Consensus Outline algorithm, 53
Consensus Outline menu item, 34

Consensus Splits algorithm, 54
Consensus Splits menu item, 34
Consensus Tree algorithm, 53
Consensus Tree menu item, 33
Copy Image menu item, 32
Copy menu item, 31
Copy Newick menu item, 31
CSV format import, 59
Cut menu item, 31

data display network, 23
Data menu, 33
data nodes, 16, 64
Decrease Font Size menu item, 32
Delete menu item, 32
Delta Score algorithm, 50
densi-tree consensus, 28
Densi-Tree tab, 11
Dice Distance algorithm, 45
Dimension Filter algorithm, 50
display labels import, 61
Distances block, 38
Distances data export, 60
Distances data import, 59
Distances menu, 33
DNA To Splits algorithm, 47
document-specific toolbar items, 6
draft prokaryotic genome, 17
Duplicate menu item, 32

Edit Input. . . menu item, 31
Edit menu, 31
Edit Traits menu item, 33
Enter Full Screen menu item, 32
Enumerate Contained Trees algorithm, 57
Estimate Invariable Sites algorithm, 48
Estimate Invariable Sites menu item, 34
explicit network, 23
export button, 7
External Program algorithm, 47

F81 Distance algorithm, 44
F81 menu item, 33

78

F84 Distance algorithm, 45
F84 menu item, 33
FastA format export, 60
FastA format import, 59
File menu, 31
files menu button, 6
Filter Characters. . . menu item, 33
Filter Splits menu item, 33
Filter Taxa menu item, 33
Filter Trees menu item, 33
Filtered Super Network algorithm, 54
Find Again menu item, 32
Find button, 7
Find. . . menu item, 32
Flip menu item, 32
From Previous Window menu item, 32

Gene Content Distance algorithm, 46
Gene Content Distance menu item, 33
Gene Sharing Distance algorithm, 46
Genomes block, 41
Genomes data export, 60
Genomes data import, 59
GML format export, 60
Goto Line. . . menu item, 32
Greedy Tree algorithm, 50
Group Identical Haplotypes. . . menu item, 33
GTDB reference genomes, 17
GTR Distance algorithm, 45

Hamming Distance algorithm, 43
Help menu, 35
HKY 85 menu item, 33
HKY85 Distance algorithm, 44
How to cite tab, 14
hybridization network, 23
Hybridization Network menu item, 34

implicit network, 23
import data button, 6
Incompatibility Score algorithm, 51
increase font size button, 7
Increase Font Size menu item, 32
input data node, 63
Input editor tab, 14
input taxa node, 63

Jaccard Distance algorithm, 46
Jukes Cantor Distance algorithm, 44
Jukes Cantor menu item, 33

K2P Distance algorithm, 44
K2P menu item, 33

Layout Labels menu item, 33
List One RSPR Trees algorithm, 58
Log Det algorithm, 43
Log Det menu item, 33
Loose And Lacy algorithm, 58
LSA Tree algorithm, 54

Main window, 5
Main window overview, 7
mash distance, 17
Median Joining algorithm, 47
Median Joining Network menu item, 34
mid-point rooting, 12
Min Spanning Network algorithm, 49
Min Spanning Network menu item, 34
Min Spanning Tree algorithm, 49
Minimum Spanning Tree menu item, 34
MSF format import, 59

Nei Li Restriction Distance algorithm, 46
Neighbor Joining algorithm, 48
Neighbor Net, 20
Neighbor Net algorithm, 49
Neighbor Net menu item, 34
Network block, 39
Network data export, 60
Network data import, 59
Network menu, 34
Network tab, 12
New. . . menu item, 31
Newick format export, 60
Newick format import, 59
NeXML format export, 60
Nexml format import, 59
Nexus format export, 60
Nexus format import, 59
NJ menu item, 33
Normalize Rooted Networks algorithm, 54

Open. . . menu item, 31
outgroup rooting, 12

P Distance algorithm, 43
P Distances menu item, 33
Page Setup. . . menu item, 31
Parsimony Splits algorithm, 47
Parsimony Splits menu item, 34
Paste menu item, 32
PCOA algorithm, 49
PCoA menu item, 35
Phi Test algorithm, 48
Phylip format export, 60
Phylip format import, 59

79

Phylo Fusion algorithm, 52
Phylogenetic Diversity algorithm, 51, 56
phylogenetic outline, 17, 29
Print. . . menu item, 31
Protein ML Dist menu item, 33
Protein ML Distance algorithm, 45

QR code, 7

redo button, 6
Redo menu item, 31
Replace Data. . . menu item, 31
Replace. . . menu item, 32
Report block, 40
Report tabs, 15
reporter node, 64
Reroot Or Reorder Trees algorithm, 55
Reroot Or Reorder Trees menu item, 34
Reset menu item, 32
Robinson Foulds Distances algorithm, 57
Rooted Consensus Tree algorithm, 54
rooted network from rooted trees, 25
rooted phylogenetic outline, 12
rooted split network, 12
Rooted Tree Equal Splits Diversity Index menu item,

35
Rooted Tree Fair Proportion Diversity Index menu

item, 35
Rotate Left menu item, 32
Rotate Right menu item, 32
Run Phi Test for Recombination menu item, 34
run-workflow, 67

Save As. . . menu item, 31
Save menu item, 31
scale ratio, 12
Select All menu item, 32
Select Inverse menu item, 32
Select menu, 32
Select None menu item, 32
selection button, 7
Set Window Size. . . menu item, 35
Sets block, 41
Shapley Values algorithm, 51
Show DensiTree menu item, 34
Show Message Window. . . menu item, 35
Show Network algorithm, 58
Show QR Code menu item, 33
Show Scale Bar menu item, 32
Show Single Tree menu item, 34
Show Splits algorithm, 50
Show Tanglegram menu item, 34
Show Tree Pages menu item, 34

Show Trees algorithm, 55
Show Workflow menu item, 35
sidebar toggle button, 6
Split Decomposition, 21
Split Decomposition algorithm, 49
Split Decomposition menu item, 34
split network, 29
Split-Network tab, 11
Splits block, 39
Splits data export, 60
Splits data import, 59
Splits Filter algorithm, 50
Splits Phylogenetic Diversity menu item, 35
Splits Shapley Values menu item, 35
Splits Slider menu item, 33
SplitsTree6 block, 41
Stockholm format import, 59
Super Network algorithm, 55
Super Network menu item, 34

tab-specific toolbar items, 6
Tajima D algorithm, 48
Tanglegram tab, 10
Taxa block, 37
Taxa data export, 60
taxa filter node, 63
Text tabs, 16
Traits block, 37
traits import, 61
Tree Diversity Index algorithm, 57
Tree menu, 33
Tree Phylogenetic Diversity menu item, 35
Tree Selector algorithm, 56
Tree Selector Splits algorithm, 56
Tree-Pages tab, 9
Tree-View tab, 8
Trees block, 39
Trees data export, 60
Trees data import, 59
Trees Edges Filter algorithm, 56
Trees Filter algorithm, 55
Trees Filter More algorithm, 55

undo button, 6
Undo menu item, 31
Unique Topologies algorithm, 56
unrooted phylogenetic outline, 12
Unrooted Shapley Values algorithm, 57
unrooted split network, 12
Unrooted Tree Shapley Values menu item, 35
Untitled menu item, 35
UPGMA algorithm, 48

80

UPGMA menu item, 33
Upholt Restriction Distance algorithm, 46
Use Dark Theme menu item, 32

View block, 40
View data export, 60
View menu, 32
view node, 64
view nodes, 16

Weights Slider algorithm, 51
Window menu, 35
workflow graph, 8, 13
workflow tab, 13
workflow tree view, 16
working data node, 63
working taxa node, 63
World Map menu item, 34
World Map tab, 13

Zoom In Horizontal menu item, 32
Zoom In menu item, 32
Zoom Out Horizontal menu item, 32
Zoom Out menu item, 32

81

	Using SplitsTree
	Getting started
	Layout of the main window
	Main toolbar items
	The main tabs
	Alignment tab
	Tree-View tab
	Tree-Pages tab
	Tanglegram tab
	DensiTree tab
	Split-Network tab
	Network tab
	World map tab
	Workflow graph tab
	How to cite tab
	Input editor tab
	Report tabs
	Text tabs
	The sidebar
	The draft genome dialog

	Building trees and networks
	Using the workflow
	Building trees
	Neighbor Net and other split network methods
	Neighbor Net
	Manipulating split networks
	Split Decomposition
	Splits in characters

	Haplotype networks
	Minimum spanning network
	Median Joining network

	Rooted phylogenetic networks
	Implicit vs explicit trees and networks
	Hybridization networks
	How to compute a rooted network from rooted trees
	Cluster networks

	Consensus trees and networks
	Consensus trees
	Average consensus method
	Strict-, majority- and greedy-consensus methods
	Densi-tree consensus

	Networks representing trees
	Consensus networks
	Consensus outline
	Confidence networks

	The main menu bar
	The File menu
	The Edit menu
	The Select menu
	The View menu
	The Data menu
	The Distances menu
	The Tree menu
	The Network menu
	The Analysis menu
	The Window menu
	The Help menu

	Main data blocks
	Taxa block
	Traits block
	Characters block
	Distances block
	Trees block
	Splits block
	Network block
	View block
	Algorithms block
	Report block
	Sets block
	SplitsTree6 block
	Genomes block

	Algorithms
	Algorithms on a Characters Block
	Algorithms on a Distances Block
	Algorithms on a Splits Block
	Algorithms on a Trees Block
	Algorithms on a Network Block

	Supported import and export formats
	Supported import formats
	Importers for a characters block
	Importers for a distances block
	Importers for a trees block
	Importers for a splits block
	Importers for a network block
	Importers for a genomes block

	Supported output formats
	Exporters for a taxa block
	Exporters for a characters block
	Exporters for a distances block
	Exporters for a trees block
	Exporters for a splits block
	Exporters for a network block
	Exporters for a genomes block
	Exporters for a view block

	Taxon display labels import
	Traits import

	Workflow
	Input and working nodes
	Data and algorithm nodes
	Exporting the workflow
	Running a workflow on multiple datasets

	Styling labels

